Your browser doesn't support javascript.
loading
Physiological adaptations to serpentinization in the Samail Ophiolite, Oman.
Fones, Elizabeth M; Colman, Daniel R; Kraus, Emily A; Nothaft, Daniel B; Poudel, Saroj; Rempfert, Kaitlin R; Spear, John R; Templeton, Alexis S; Boyd, Eric S.
Afiliação
  • Fones EM; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
  • Colman DR; NASA Astrobiology Institute, Mountain View, CA, USA.
  • Kraus EA; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
  • Nothaft DB; NASA Astrobiology Institute, Mountain View, CA, USA.
  • Poudel S; NASA Astrobiology Institute, Mountain View, CA, USA.
  • Rempfert KR; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
  • Spear JR; NASA Astrobiology Institute, Mountain View, CA, USA.
  • Templeton AS; Department of Geological Sciences, University of Colorado, Boulder, CO, USA.
  • Boyd ES; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
ISME J ; 13(7): 1750-1762, 2019 07.
Article em En | MEDLINE | ID: mdl-30872803
Hydration of ultramafic rock during the geologic process of serpentinization can generate reduced substrates that microorganisms may use to fuel their carbon and energy metabolisms. However, serpentinizing environments also place multiple constraints on microbial life by generating highly reduced hyperalkaline waters that are limited in dissolved inorganic carbon. To better understand how microbial life persists under these conditions, we performed geochemical measurements on waters from a serpentinizing environment and subjected planktonic microbial cells to metagenomic and physiological analyses. Metabolic potential inferred from metagenomes correlated with fluid type, and genes involved in anaerobic metabolisms were enriched in hyperalkaline waters. The abundance of planktonic cells and their rates of utilization of select single-carbon compounds were lower in hyperalkaline waters than alkaline waters. However, the ratios of substrate assimilation to dissimilation were higher in hyperalkaline waters than alkaline waters, which may represent adaptation to minimize energetic and physiologic stress imposed by highly reducing, carbon-limited conditions. Consistent with this hypothesis, estimated genome sizes and average oxidation states of carbon in inferred proteomes were lower in hyperalkaline waters than in alkaline waters. These data suggest that microorganisms inhabiting serpentinized waters exhibit a unique suite of physiological adaptations that allow for their persistence under these polyextremophilic conditions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Asbestos Serpentinas / Fenômenos Fisiológicos Bacterianos / Sedimentos Geológicos País/Região como assunto: Asia Idioma: En Revista: ISME J Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Asbestos Serpentinas / Fenômenos Fisiológicos Bacterianos / Sedimentos Geológicos País/Região como assunto: Asia Idioma: En Revista: ISME J Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos