Your browser doesn't support javascript.
loading
Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces.
Buckley, Aya K; Lee, Michelle; Cheng, Tao; Kazantsev, Roman V; Larson, David M; Goddard, William A; Toste, F Dean; Toma, Francesca M.
Afiliação
  • Buckley AK; Department of Chemistry , University of California , Berkeley , California 94720 , United States.
  • Lee M; Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.
  • Cheng T; Joint Center for Artificial Photosynthesis and Materials and Process Simulation Center , California Institute of Technology , Pasadena , California 91125 , United States.
  • Kazantsev RV; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Renai Road , Suzhou , 215123 , Jiangsu , PR Chin
  • Toste FD; Joint Center for Artificial Photosynthesis and Materials and Process Simulation Center , California Institute of Technology , Pasadena , California 91125 , United States.
  • Toma FM; Department of Chemistry , University of California , Berkeley , California 94720 , United States.
J Am Chem Soc ; 141(18): 7355-7364, 2019 05 08.
Article em En | MEDLINE | ID: mdl-30929423
ABSTRACT
The limited selectivity of existing CO2 reduction catalysts and rising levels of CO2 in the atmosphere necessitate the identification of specific structure-reactivity relationships to inform catalyst development. Herein, we develop a predictive framework to tune the selectivity of CO2 reduction on Cu by examining a series of polymeric and molecular modifiers. We find that protic species enhance selectivity for H2, hydrophilic species enhance formic acid formation, and cationic hydrophobic species enhance CO selectivity. ReaxFF reactive molecular dynamics simulations indicate that the hydrophilic/hydrophobic modifiers influence the formation of surface hydrides, which yield formic acid or H2. These observations offer insights into how these modifiers influence catalytic behavior at the non-precious Cu surface and may aid in the future implementation of organic structures in CO2 reduction devices.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Am Chem Soc Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Am Chem Soc Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos