Your browser doesn't support javascript.
loading
Cx43-Associated Secretome and Interactome Reveal Synergistic Mechanisms for Glioma Migration and MMP3 Activation.
Aftab, Qurratulain; Mesnil, Marc; Ojefua, Emmanuel; Poole, Alisha; Noordenbos, Jenna; Strale, Pierre-Olivier; Sitko, Chris; Le, Caitlin; Stoynov, Nikolay; Foster, Leonard J; Sin, Wun-Chey; Naus, Christian C; Chen, Vincent C.
Afiliação
  • Aftab Q; Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
  • Mesnil M; Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France.
  • Ojefua E; Department of Chemistry, Brandon University, Brandon, MB, Canada.
  • Poole A; Department of Chemistry, Brandon University, Brandon, MB, Canada.
  • Noordenbos J; Department of Chemistry, Brandon University, Brandon, MB, Canada.
  • Strale PO; Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
  • Sitko C; Department of Chemistry, Brandon University, Brandon, MB, Canada.
  • Le C; Department of Chemistry, Brandon University, Brandon, MB, Canada.
  • Stoynov N; Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada.
  • Foster LJ; Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada.
  • Sin WC; Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France.
  • Naus CC; Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France.
  • Chen VC; Department of Chemistry, Brandon University, Brandon, MB, Canada.
Front Neurosci ; 13: 143, 2019.
Article em En | MEDLINE | ID: mdl-30941001
ABSTRACT
Extracellular matrix (ECM) remodeling, degradation and glioma cell motility are critical aspects of glioblastoma multiforme (GBM). Despite being a rich source of potential biomarkers and targets for therapeutic advance, the dynamic changes occurring within the extracellular environment that are specific to GBM motility have yet to be fully resolved. The gap junction protein connexin43 (Cx43) increases glioma migration and invasion in a variety of in vitro and in vivo models. In this study, the upregulation of Cx43 in C6 glioma cells induced morphological changes and the secretion of proteins associated with cell motility. Demonstrating the selective engagement of ECM remodeling networks, secretome analysis revealed the near-binary increase of osteopontin and matrix metalloproteinase-3 (MMP3), with gelatinase and NFF-3 assays confirming the proteolytic activities. Informatic analysis of interactome and secretome downstream of Cx43 identifies networks of glioma motility that appear to be synergistically engaged. The data presented here implicate ECM remodeling and matrikine signals downstream of Cx43/MMP3/osteopontin and ARK1B10 inhibition as possible avenues to inhibit GBM.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: Front Neurosci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: Front Neurosci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Canadá