Your browser doesn't support javascript.
loading
Doxorubicin-induced neurotoxicity is associated with acute alterations in synaptic plasticity, apoptosis, and lipid peroxidation.
Alhowail, Ahmad H; Bloemer, Jenna; Majrashi, Mohammed; Pinky, Priyanka D; Bhattacharya, Subhrajit; Yongli, Zhang; Bhattacharya, Dwipayan; Eggert, Matthew; Woodie, Lauren; Buabeid, Manal A; Johnson, Nathaniel; Broadwater, Alyssa; Smith, Bruce; Dhanasekaran, Muralikrishnan; Arnold, Robert D; Suppiramaniam, Vishnu.
Afiliação
  • Alhowail AH; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
  • Bloemer J; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
  • Majrashi M; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
  • Pinky PD; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
  • Bhattacharya S; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
  • Yongli Z; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
  • Bhattacharya D; b Tianjin Huanhu Hospital , Tianjin , PR China.
  • Eggert M; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
  • Woodie L; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
  • Buabeid MA; c Department of Nutrition, Dietetics and Hospitality Management , College of Human Sciences, Auburn University , Auburn , AL , USA.
  • Johnson N; d College of Pharmacy and Health Sciences , Ajman University , Ajman , UAE.
  • Broadwater A; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
  • Smith B; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
  • Dhanasekaran M; e Department of Anatomy, Physiology and Pharmacology , College of Veterinary Medicine, Auburn University , Auburn , AL , USA.
  • Arnold RD; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
  • Suppiramaniam V; a Department of Drug Discovery and Development , Auburn University , Auburn , AL , USA.
Toxicol Mech Methods ; 29(6): 457-466, 2019 Jul.
Article em En | MEDLINE | ID: mdl-31010378
Cognitive deficits are commonly reported by patients following treatment with chemotherapeutic agents. Anthracycline-containing chemotherapy regimens are associated with cognitive impairment and reductions in neuronal connectivity in cancer survivors, and doxorubicin (Dox) is a commonly used anthracycline. Although it has been reported that Dox distribution to the central nervous system (CNS) is limited, considerable Dox concentrations are observed in the brain with co-administration of certain medications. Additionally, pro-inflammatory cytokines, which are overproduced in cancer or in response to chemotherapy, can reduce the integrity of the blood-brain barrier (BBB). Therefore, the aim of this study was to evaluate the acute neurotoxic effects of Dox on hippocampal neurons. In this study, we utilized a hippocampal cell line (H19-7/IGF-IR) along with rodent hippocampal slices to evaluate the acute neurotoxic effects of Dox. Hippocampal slices were used to measure long-term potentiation (LTP), and expression of proteins was determined by immunoblotting. Cellular assays for mitochondrial complex activity and lipid peroxidation were also utilized. We observed reduction in LTP in hippocampal slices with Dox. In addition, lipid peroxidation was increased as measured by thiobarbituric acid reactive substances content indicating oxidative stress. Caspase-3 expression was increased indicating an increased propensity for cell death. Finally, the phosphorylation of signaling molecules which modulate LTP including extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase, and Akt were increased. This data indicates that acute Dox exposure dose-dependently impairs synaptic processes associated with hippocampal neurotransmission, induces apoptosis, and increases lipid peroxidation leading to neurotoxicity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peroxidação de Lipídeos / Doxorrubicina / Apoptose / Hipocampo / Antibióticos Antineoplásicos / Plasticidade Neuronal / Neurônios Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Revista: Toxicol Mech Methods Assunto da revista: TOXICOLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peroxidação de Lipídeos / Doxorrubicina / Apoptose / Hipocampo / Antibióticos Antineoplásicos / Plasticidade Neuronal / Neurônios Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Revista: Toxicol Mech Methods Assunto da revista: TOXICOLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos