Your browser doesn't support javascript.
loading
Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity.
Kandlikar, Gaurav S; Johnson, Christopher A; Yan, Xinyi; Kraft, Nathan J B; Levine, Jonathan M.
Afiliação
  • Kandlikar GS; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
  • Johnson CA; Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
  • Yan X; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
  • Kraft NJB; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
  • Levine JM; Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
Ecol Lett ; 22(8): 1178-1191, 2019 Aug.
Article em En | MEDLINE | ID: mdl-31134744
ABSTRACT
Interactions between plants and soil microbes can strongly influence plant diversity and community dynamics. Soil microbes may promote plant diversity by driving negative frequency-dependent plant population dynamics, or may favor species exclusion by providing one species an average fitness advantage over others. However, past empirical research has focused overwhelmingly on the consequences of frequency-dependent feedbacks for plant species coexistence and has generally neglected the consequences of microbially mediated average fitness differences. Here we use theory to develop metrics that quantify microbially mediated plant fitness differences, and show that accounting for these effects can profoundly change our understanding of how microbes influence plant diversity. We show that soil microbes can generate fitness differences that favour plant species exclusion when they disproportionately harm (or favour) one plant species over another, but these fitness differences may also favor coexistence if they trade off with competition for other resources or generate intransitive dominance hierarchies among plants. We also show how the metrics we present can quantify microbially mediated fitness differences in empirical studies, and explore how microbial control over coexistence varies along productivity gradients. In all, our analysis provides a more complete theoretical foundation for understanding how plant-microbe interactions influence plant diversity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plantas / Microbiologia do Solo / Biodiversidade Idioma: En Revista: Ecol Lett Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plantas / Microbiologia do Solo / Biodiversidade Idioma: En Revista: Ecol Lett Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos