Your browser doesn't support javascript.
loading
MATria: a unified centrality algorithm.
Cickovski, Trevor; Aguiar-Pulido, Vanessa; Narasimhan, Giri.
Afiliação
  • Cickovski T; Bioinformatics Research Group (BioRG) & Biomolecular Sciences Institute, School of Computing & Information Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, FL, USA. tcickovs@fiu.edu.
  • Aguiar-Pulido V; Center for Neurogenetics, Weill Cornell Medical College, New York, 10021, NY, USA.
  • Narasimhan G; Bioinformatics Research Group (BioRG) & Biomolecular Sciences Institute, School of Computing & Information Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, FL, USA.
BMC Bioinformatics ; 20(Suppl 11): 278, 2019 Jun 06.
Article em En | MEDLINE | ID: mdl-31167635
BACKGROUND: Computing centrality is a foundational concept in social networking that involves finding the most "central" or important nodes. In some biological networks defining importance is difficult, which then creates challenges in finding an appropriate centrality algorithm. RESULTS: We instead generalize the results of any k centrality algorithms through our iterative algorithm MATRIA, producing a single ranked and unified set of central nodes. Through tests on three biological networks, we demonstrate evident and balanced correlations with the results of these k algorithms. We also improve its speed through GPU parallelism. CONCLUSIONS: Our results show iteration to be a powerful technique that can eliminate spatial bias among central nodes, increasing the level of agreement between algorithms with various importance definitions. GPU parallelism improves speed and makes iteration a tractable problem for larger networks.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos