Expression of a Degradation-Resistant ß-Catenin Mutant in Osteocytes Protects the Skeleton From Mechanodeprivation-Induced Bone Wasting.
J Bone Miner Res
; 34(10): 1964-1975, 2019 10.
Article
em En
| MEDLINE
| ID: mdl-31173667
Mechanical stimulation is a key regulator of bone mass, maintenance, and turnover. Wnt signaling is a key regulator of mechanotransduction in bone, but the role of ß-catenin-an intracellular signaling node in the canonical Wnt pathway-in disuse mechanotransduction is not defined. Using the ß-catenin exon 3 flox (constitutively active [CA]) mouse model, in conjunction with a tamoxifen-inducible, osteocyte-selective Cre driver, we evaluated the effects of degradation-resistant ß-catenin on bone properties during disuse. We hypothesized that if ß-catenin plays an important role in Wnt-mediated osteoprotection, then artificial stabilization of ß-catenin in osteocytes would protect the limbs from disuse-induced bone wasting. Two disuse models were tested: tail suspension, which models fluid shift, and botulinum-toxin (botox)-induced muscle paralysis, which models loss of muscle force. Tail suspension was associated with a significant loss of tibial bone mass and density, reduced architectural properties, and decreased bone formation indices in uninduced (control) mice, as assessed by dual-energy X-ray absorptiometry (DXA), micro-computed tomography (µCT), and histomorphometry. Activation of the ßcatCA allele in tail-suspended mice resulted in little to no change in those properties; ie, these mice were protected from bone loss. Similar protective effects were observed among botox-treated mice when the ßcatCA was activated. RNAseq analysis of altered gene regulation in tail-suspended mice yielded 35 genes, including Wnt11, Gli1, Nell1, Gdf5, and Pgf, which were significantly differentially regulated between tail-suspended ß-catenin stabilized mice and tail-suspended nonstabilized mice. Our findings indicate that selectively targeting/blocking of ß-catenin degradation in bone cells could have therapeutic implications in mechanically induced bone disease. © 2019 American Society for Bone and Mineral Research.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Osteócitos
/
Osteogênese
/
Tíbia
/
Mecanotransdução Celular
/
Beta Catenina
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
J Bone Miner Res
Assunto da revista:
METABOLISMO
/
ORTOPEDIA
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
Estados Unidos