Your browser doesn't support javascript.
loading
ADAMTS13 maintains cerebrovascular integrity to ameliorate Alzheimer-like pathology.
Cao, Yongliang; Xu, Haochen; Zhu, Yuanbo; Shi, Mei-Juan; Wei, Lixiang; Zhang, Jin; Cheng, Shuo; Shi, Yiqian; Tong, Haiyang; Kang, Lijing; Lu, Lu; Luo, Haiyu; Yang, Xing; Bai, Xiaofei; Wang, Ranran; Ma, Yuanyuan; Wang, Yun; Wang, Zhongfeng; Zhong, Kai; Zhao, Bing-Qiao; Fan, Wenying.
Afiliação
  • Cao Y; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Xu H; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Zhu Y; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Shi MJ; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Wei L; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Zhang J; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui, China.
  • Cheng S; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Shi Y; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Tong H; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui, China.
  • Kang L; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Lu L; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Luo H; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Yang X; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Bai X; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Wang R; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Ma Y; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Wang Y; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Wang Z; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
  • Zhong K; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui, China.
  • Zhao BQ; Neurodegenerative Disease Research Center, School of Life Sciences, University of Science and Technology of China, CAS Key Laboratory of Brain Functions and Disease, Hefei, China.
  • Fan W; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
PLoS Biol ; 17(6): e3000313, 2019 06.
Article em En | MEDLINE | ID: mdl-31185010
ABSTRACT
Blood-brain barrier (BBB) defects and cerebrovascular dysfunction contribute to amyloid-ß (Aß) brain accumulation and drive Alzheimer disease (AD) pathology. By regulating vascular functions and inflammation in the microvasculature, a disintegrin and metalloprotease with thrombospondin type I motif, member 13 (ADAMTS13) plays a significant protective effect in atherosclerosis and stroke. However, whether ADAMTS13 influences AD pathogenesis remains unclear. Using in vivo multiphoton microscopy, histological, behavioral, and biological methods, we determined BBB integrity, cerebrovascular dysfunction, amyloid accumulation, and cognitive impairment in APPPS1 mice lacking ADAMTS13. We also tested the impact of viral-mediated expression of ADAMTS13 on cerebrovascular function and AD-like pathology in APPPS1 mice. We show that ADAMTS13 deficiency led to an early and progressive BBB breakdown as well as reductions in vessel density, capillary perfusion, and cerebral blood flow in APPPS1 mice. We found that deficiency of ADAMTS13 increased brain plaque load and Aß levels and accelerated cerebral amyloid angiopathy (CAA) by impeding BBB-mediated clearance of brain Aß, resulting in worse cognitive decline in APPPS1 mice. Virus-mediated expression of ADAMTS13 attenuated BBB disruption and increased microvessels, capillary perfusion, and cerebral blood flow in APPPS1 mice already showing BBB damage and plaque deposition. These beneficial vascular effects were reflected by increase in clearance of cerebral Aß, reductions in Aß brain accumulation, and improvements in cognitive performance. Our results show that ADAMTS13 deficiency contributes to AD cerebrovascular dysfunction and the resulting pathogenesis and cognitive deficits and suggest that ADAMTS13 may offer novel therapeutic opportunities for AD.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Circulação Cerebrovascular / Proteína ADAMTS13 Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: PLoS Biol Assunto da revista: BIOLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Circulação Cerebrovascular / Proteína ADAMTS13 Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: PLoS Biol Assunto da revista: BIOLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China