Your browser doesn't support javascript.
loading
Mass spectra alignment using virtual lock-masses.
Brochu, Francis; Plante, Pier-Luc; Drouin, Alexandre; Gagnon, Dominic; Richard, Dave; Durocher, Francine; Diorio, Caroline; Marchand, Mario; Corbeil, Jacques; Laviolette, François.
Afiliação
  • Brochu F; Big Data Research Center, Université Laval, Québec, Qc, Canada. francis.brochu.2@ulaval.ca.
  • Plante PL; Département d'Informatique et Génie Logiciel, Université Laval, Québec, Qc, Canada. francis.brochu.2@ulaval.ca.
  • Drouin A; Centre de Recherche du CHU de Québec, Université Laval, Québec, Qc, Canada.
  • Gagnon D; Big Data Research Center, Université Laval, Québec, Qc, Canada.
  • Richard D; Département d'Informatique et Génie Logiciel, Université Laval, Québec, Qc, Canada.
  • Durocher F; Centre de Recherche du CHU de Québec, Université Laval, Québec, Qc, Canada.
  • Diorio C; Infectious Disease Reasearch Center, Université Laval, Québec, Qc, Canada.
  • Marchand M; Centre de Recherche du CHU de Québec, Université Laval, Québec, Qc, Canada.
  • Corbeil J; Infectious Disease Reasearch Center, Université Laval, Québec, Qc, Canada.
  • Laviolette F; Centre de Recherche du CHU de Québec, Université Laval, Québec, Qc, Canada.
Sci Rep ; 9(1): 8469, 2019 06 11.
Article em En | MEDLINE | ID: mdl-31186508
Mass spectrometry is a valued method to evaluate the metabolomics content of a biological sample. The recent advent of rapid ionization technologies such as Laser Diode Thermal Desorption (LDTD) and Direct Analysis in Real Time (DART) has rendered high-throughput mass spectrometry possible. It is used for large-scale comparative analysis of populations of samples. In practice, many factors resulting from the environment, the protocol, and even the instrument itself, can lead to minor discrepancies between spectra, rendering automated comparative analysis difficult. In this work, a sequence/pipeline of algorithms to correct variations between spectra is proposed. The algorithms correct multiple spectra by identifying peaks that are common to all and, from those, computes a spectrum-specific correction. We show that these algorithms increase comparability within large datasets of spectra, facilitating comparative analysis, such as machine learning.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Canadá