Your browser doesn't support javascript.
loading
The effects of biochar and dredged sediments on soil structure and fertility promote the growth, photosynthetic and rhizosphere microbial diversity of Phragmites communis (Cav.) Trin. ex Steud.
Huang, Xiang-Feng; Li, Shuang-Qiang; Li, Shi-Yang; Ye, Guang-Yu; Lu, Li-Jun; Zhang, Lin; Yang, Liu-Yan; Qian, Xin; Liu, Jia.
Afiliação
  • Huang XF; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
  • Li SQ; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
  • Li SY; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
  • Ye GY; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
  • Lu LJ; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
  • Zhang L; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
  • Yang LY; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
  • Qian X; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
  • Liu J; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China. Electro
Sci Total Environ ; 697: 134073, 2019 Dec 20.
Article em En | MEDLINE | ID: mdl-31473547
ABSTRACT
The improvement of urban river revetment soil is conducive to promote the growth of pioneer plants which can accelerate the restoration of ecosystems. How to effectively amend soil structure and composition to provide a suitable soil rhizosphere for rapid plant expansion is essential to be solved in the study. Biochar and lake dredged sediments were used to amend an urban river bank soil, where compaction and lack of mineral nutrition hindered the growth of Phragmites. The study found that the addition of 50% mass of dredged sediments combined with 5% mass of straw biochar increased the plant height maximum growth rate, tiller number per unit area, and root biomass by 32.93%, 29.62%, and 41.39%, respectively. The reason for these positive effects on plant growth mainly involved the improvement of rhizosphere soil properties. Addition of biochar increased porosity and available phosphorus content while dredged sediments increased soil organic carbon, thereby increasing the underground unit total phosphorus content of Phragmites by 18.18%. An increase of the Alpha diversity index of rhizosphere microorganisms (8.18%) and the decrease in infection rate of arbuscular mycorrhizal fungi (23.61%) also proved that the rapid expansion of Phragmites was improved owing to changes of the soil physicochemical properties. The combination of biochar and dredged sediments realized synergistic improvement of soil physical structure and increase of nutrient content, which helped promote the growth and expansion of the underground part of Phragmites. This cost-effective method can be feasible used for improvement of urban river revetment ecosystem.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiologia do Solo / Recuperação e Remediação Ambiental / Rizosfera / Poaceae Idioma: En Revista: Sci Total Environ Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiologia do Solo / Recuperação e Remediação Ambiental / Rizosfera / Poaceae Idioma: En Revista: Sci Total Environ Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China