Your browser doesn't support javascript.
loading
HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons.
Byczkowicz, Niklas; Eshra, Abdelmoneim; Montanaro, Jacqueline; Trevisiol, Andrea; Hirrlinger, Johannes; Kole, Maarten Hp; Shigemoto, Ryuichi; Hallermann, Stefan.
Afiliação
  • Byczkowicz N; Carl-Ludwig-Institute for Physiology, Medical Faculty, University Leipzig, Leipzig, Germany.
  • Eshra A; Carl-Ludwig-Institute for Physiology, Medical Faculty, University Leipzig, Leipzig, Germany.
  • Montanaro J; Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
  • Trevisiol A; Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany.
  • Hirrlinger J; Carl-Ludwig-Institute for Physiology, Medical Faculty, University Leipzig, Leipzig, Germany.
  • Kole MH; Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany.
  • Shigemoto R; Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.
  • Hallermann S; Cell Biology, Faculty of Science, University of Utrecht, Padualaan, Netherlands.
Elife ; 82019 09 09.
Article em En | MEDLINE | ID: mdl-31496517
ABSTRACT
Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels control electrical rhythmicity and excitability in the heart and brain, but the function of HCN channels at the subcellular level in axons remains poorly understood. Here, we show that the action potential conduction velocity in both myelinated and unmyelinated central axons can be bidirectionally modulated by a HCN channel blocker, cyclic adenosine monophosphate (cAMP), and neuromodulators. Recordings from mouse cerebellar mossy fiber boutons show that HCN channels ensure reliable high-frequency firing and are strongly modulated by cAMP (EC50 40 µM; estimated endogenous cAMP concentration 13 µM). In addition, immunogold-electron microscopy revealed HCN2 as the dominating subunit in cerebellar mossy fibers. Computational modeling indicated that HCN2 channels control conduction velocity primarily by altering the resting membrane potential and are associated with significant metabolic costs. These results suggest that the cAMP-HCN pathway provides neuromodulators with an opportunity to finely tune energy consumption and temporal delays across axons in the brain.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Axônios / Potenciais de Ação / Canais de Potássio / Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização / Fibras Nervosas / Condução Nervosa Limite: Animals Idioma: En Revista: Elife Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Axônios / Potenciais de Ação / Canais de Potássio / Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização / Fibras Nervosas / Condução Nervosa Limite: Animals Idioma: En Revista: Elife Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha