Your browser doesn't support javascript.
loading
Identification of 4-Amino-Thieno[2,3-d]Pyrimidines as QcrB Inhibitors in Mycobacterium tuberculosis.
Harrison, Gregory A; Mayer Bridwell, Anne E; Singh, Megh; Jayaraman, Keshav; Weiss, Leslie A; Kinsella, Rachel L; Aneke, Janessa S; Flentie, Kelly; Schene, Miranda E; Gaggioli, Margaret; Solomon, Samantha D; Wildman, Scott A; Meyers, Marvin J; Stallings, Christina L.
Afiliação
  • Harrison GA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Mayer Bridwell AE; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Singh M; Center for World Health and Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA.
  • Jayaraman K; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Weiss LA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Kinsella RL; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Aneke JS; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Flentie K; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Schene ME; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Gaggioli M; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Solomon SD; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Wildman SA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Meyers MJ; Center for World Health and Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA.
  • Stallings CL; Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA.
mSphere ; 4(5)2019 09 11.
Article em En | MEDLINE | ID: mdl-31511370
ABSTRACT
Antibiotic resistance is a global crisis that threatens our ability to treat bacterial infections, such as tuberculosis, caused by Mycobacterium tuberculosis Of the 10 million cases of tuberculosis in 2017, approximately 19% of new cases and 43% of previously treated cases were caused by strains of M. tuberculosis resistant to at least one frontline antibiotic. There is a clear need for new therapies that target these genetically resistant strains. Here, we report the discovery of a new series of antimycobacterial compounds, 4-amino-thieno[2,3-d]pyrimidines, that potently inhibit the growth of M. tuberculosis To elucidate the mechanism by which these compounds inhibit M. tuberculosis, we selected for mutants resistant to a representative 4-amino-thieno[2,3-d]pyrimidine and sequenced these strains to identify the mutations that confer resistance. We isolated a total of 12 resistant mutants, each of which harbored a nonsynonymous mutation in the gene qcrB, which encodes a subunit of the electron transport chain (ETC) enzyme cytochrome bc1 oxidoreductase, leading us to hypothesize that 4-amino-thieno[2,3-d]pyrimidines target this enzyme complex. We found that addition of 4-amino-thieno[2,3-d]pyrimidines to M. tuberculosis cultures resulted in a decrease in ATP levels, supporting our model that these compounds inhibit the M. tuberculosis ETC. Furthermore, 4-amino-thieno[2,3-d]pyrimidines had enhanced activity against a mutant of M. tuberculosis deficient in cytochrome bd oxidase, which is a hallmark of cytochrome bc1 inhibitors. Therefore, 4-amino-thieno[2,3-d]pyrimidines represent a novel series of QcrB inhibitors that build on the growing number of chemical scaffolds that are able to inhibit the mycobacterial cytochrome bc1 complex.IMPORTANCE The global tuberculosis (TB) epidemic has been exacerbated by the rise in drug-resistant TB cases worldwide. To tackle this crisis, it is necessary to identify new vulnerable drug targets in Mycobacterium tuberculosis, the causative agent of TB, and develop compounds that can inhibit the bacterium through novel mechanisms of action. The QcrB subunit of the electron transport chain enzyme cytochrome bc1 has recently been validated to be a potential drug target. In the current work, we report the discovery of a new class of QcrB inhibitors, 4-amino-thieno[2,3-d]pyrimidines, that potently inhibit M. tuberculosis growth in vitro These compounds are chemically distinct from previously reported QcrB inhibitors, and therefore, 4-amino-thieno[2,3-d]pyrimidines represent a new scaffold that can be exploited to inhibit this drug target.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pirimidinas / Proteínas de Bactérias / Complexo III da Cadeia de Transporte de Elétrons / Antibióticos Antituberculose / Mycobacterium tuberculosis Tipo de estudo: Diagnostic_studies Idioma: En Revista: MSphere Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pirimidinas / Proteínas de Bactérias / Complexo III da Cadeia de Transporte de Elétrons / Antibióticos Antituberculose / Mycobacterium tuberculosis Tipo de estudo: Diagnostic_studies Idioma: En Revista: MSphere Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos