Your browser doesn't support javascript.
loading
Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum).
Zhang, Yuanyuan; Bouwmeester, Harro J; Kappers, Iris F.
Afiliação
  • Zhang Y; Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands.
  • Bouwmeester HJ; Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, Amsterdam, The Netherlands.
  • Kappers IF; Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg, Wageningen, The Netherlands.
J Exp Bot ; 71(1): 330-343, 2020 01 01.
Article em En | MEDLINE | ID: mdl-31557301
Plants regulate responses towards herbivory through fine-tuning of defence-related hormone production, expression of defence genes, and production of secondary metabolites. Jasmonic acid (JA) plays a key role in plant-herbivorous arthropod interactions. To understand how pepper (Capsicum annuum) responds to herbivory, leaf transcriptomes and metabolomes of two genotypes different in their susceptibility to spider mites were studied. Mites induced both JA and salicylic acid (SA) signalling. However, mite infestation and exogenous JA resulted in distinct transcriptome profiles. Compared with JA, mites induced fewer differentially expressed genes involved in metabolic processes (except for genes involved in the phenylpropanoid pathway) and lipid metabolic processes. Furthermore, pathogen-related defence responses including WRKY transcription factors were more strongly induced upon mite infestation, probably as a result of induced SA signalling. Untargeted analysis of secondary metabolites confirmed that JA treatment induced larger changes in metabolism than spider mite infestation, resulting in higher terpenoid and flavonoid production. The more resistant genotype exhibited a larger increase in endogenous JA and volatile and non-volatile secondary metabolites upon infestation, which could explain its stronger defence. Reasoning that in JA-SA antagonizing crosstalk, SA defences are prioritized over JA defences, we hypothesize that lack of SA-mediated repression of JA-induced defences could result in gain of resistance towards spider mites in pepper.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Capsicum / Tetranychidae / Metaboloma / Herbivoria / Transcriptoma Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Exp Bot Assunto da revista: BOTANICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Capsicum / Tetranychidae / Metaboloma / Herbivoria / Transcriptoma Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Exp Bot Assunto da revista: BOTANICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Holanda