Your browser doesn't support javascript.
loading
Understanding optical reflectance contrast for real-time characterization of epithelial precursor lesions.
Chen, Si; Ge, Xin; Liu, Xinyu; Ding, Qianshan; Wang, Nanshuo; Wang, Xianghong; Chen, Shufen; Liang, Haitao; Deng, Yunchao; Xiong, Qiaozhou; Ni, Guangming; Bo, En; Xu, Chenjie; Yu, Honggang; Liu, Linbo.
Afiliação
  • Chen S; School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore.
  • Ge X; School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore.
  • Liu X; School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore.
  • Ding Q; Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan China.
  • Wang N; School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore.
  • Wang X; School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore.
  • Chen S; School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore.
  • Liang H; School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore.
  • Deng Y; Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan China.
  • Xiong Q; School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore.
  • Ni G; State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information University of Electronic Science and Technology of China Chengdu China.
  • Bo E; School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore.
  • Xu C; School of Chemical and Biomedical Engineering Nanyang Technological University Singapore Singapore.
  • Yu H; Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan China.
  • Liu L; School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore.
Bioeng Transl Med ; 4(3): e10137, 2019 Sep.
Article em En | MEDLINE | ID: mdl-31572795
ABSTRACT
Detecting early-stage epithelial cancers and their precursor lesions are challenging as lesions could be subtle and focally or heterogeneously distributed over large mucosal areas. Optical coherence tomography (OCT) that enables wide-field imaging of subsurface microstructures in vivo is a promising screening tool for epithelial diseases. However, its diagnostic capability has not been fully appreciated since the optical reflectance contrast is poorly understood. We investigated the back-scattered intensities from clustered or packed nanometer scale intracellular scatterers using finite-difference time-domain method and 1-µm resolution form of OCT, and uncovered that there existed correlations between the reflectance contrasts and the ultrastructural clustering or packing states of these scatterers, which allows us to interpret the physiological state of the cells. Specifically, both polarized goblet cells and foveolar cells exhibited asymmetric reflectance contrast, but they could be differentiated by the optical intensity of the mucin cup due to the different ultrastructural make-ups of the mucin granules; keratinocytes could demonstrate varied cytoplasmic intensity and their cytoplasmic contrast was closely correlated with the packing state of keratin filaments. Further preliminary study demonstrated that these new understandings of OCT image contrast enables the characterization of precancerous lesions, which could complement the current morphology-based criteria in realizing "virtual histology" and would have a profound impact for the screening and surveillance of epithelial cancers.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioeng Transl Med Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioeng Transl Med Ano de publicação: 2019 Tipo de documento: Article