Your browser doesn't support javascript.
loading
Big data, observational research and P-value: a recipe for false-positive findings? A study of simulated and real prospective cohorts.
Veronesi, Giovanni; Grassi, Guido; Savelli, Giordano; Quatto, Piero; Zambon, Antonella.
Afiliação
  • Veronesi G; Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
  • Grassi G; Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
  • Savelli G; U.O. Medicina Nucleare, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.
  • Quatto P; Department of Economics, Management and Statistics.
  • Zambon A; Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milano, Italy.
Int J Epidemiol ; 49(3): 876-884, 2020 06 01.
Article em En | MEDLINE | ID: mdl-31620789
BACKGROUND: An increasing number of observational studies combine large sample sizes with low participation rates, which could lead to standard inference failing to control the false-discovery rate. We investigated if the 'empirical calibration of P-value' method (EPCV), reliant on negative controls, can preserve type I error in the context of survival analysis. METHODS: We used simulated cohort studies with 50% participation rate and two different selection bias mechanisms, and a real-life application on predictors of cancer mortality using data from four population-based cohorts in Northern Italy (n = 6976 men and women aged 25-74 years at baseline and 17 years of median follow-up). RESULTS: Type I error for the standard Cox model was above the 5% nominal level in 15 out of 16 simulated settings; for n = 10 000, the chances of a null association with hazard ratio = 1.05 having a P-value < 0.05 were 42.5%. Conversely, EPCV with 10 negative controls preserved the 5% nominal level in all the simulation settings, reducing bias in the point estimate by 80-90% when its main assumption was verified. In the real case, 15 out of 21 (71%) blood markers with no association with cancer mortality according to literature had a P-value < 0.05 in age- and gender-adjusted Cox models. After calibration, only 1 (4.8%) remained statistically significant. CONCLUSIONS: In the analyses of large observational studies prone to selection bias, the use of empirical distribution to calibrate P-values can substantially reduce the number of trivial results needing further screening for relevance and external validity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Viés / Interpretação Estatística de Dados / Estudos Observacionais como Assunto / Big Data Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Male / Middle aged País/Região como assunto: Europa Idioma: En Revista: Int J Epidemiol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Viés / Interpretação Estatística de Dados / Estudos Observacionais como Assunto / Big Data Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Male / Middle aged País/Região como assunto: Europa Idioma: En Revista: Int J Epidemiol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Itália