Your browser doesn't support javascript.
loading
Matrix Product States: Entanglement, Symmetries, and State Transformations.
Sauerwein, David; Molnar, Andras; Cirac, J Ignacio; Kraus, Barbara.
Afiliação
  • Sauerwein D; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany and Institute for Theoretical Physics, University of Innsbruck, Technikerstraße 21A, 6020 Innsbruck, Austria.
  • Molnar A; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 München, Germany.
  • Cirac JI; Instituto de Ciencias Matemáticas (ICMAT), C/ Nicolás Cabrera, nº 13-15 Campus de Cantoblanco, UAM, 8049 Madrid, Spain.
  • Kraus B; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 München, Germany.
Phys Rev Lett ; 123(17): 170504, 2019 Oct 25.
Article em En | MEDLINE | ID: mdl-31702229
We analyze entanglement in the family of translationally invariant matrix product states (MPS). We give a criterion to determine when two states can be transformed into each other by local operations with a nonvanishing probability, a central question in entanglement theory. This induces a classification within this family of states, which we explicitly carry out for the simplest, nontrivial MPS. We also characterize all symmetries of translationally invariant MPS, both global and local (inhomogeneous). We illustrate our results with examples of states that are relevant in different physical contexts.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Áustria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Áustria