Your browser doesn't support javascript.
loading
Breakup and Recovery of Topological Zero Modes in Finite Non-Hermitian Optical Lattices.
Song, Wange; Sun, Wenzhao; Chen, Chen; Song, Qinghai; Xiao, Shumin; Zhu, Shining; Li, Tao.
Afiliação
  • Song W; National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
  • Sun W; Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
  • Chen C; State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology, Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China.
  • Song Q; National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
  • Xiao S; Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
  • Zhu S; State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology, Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China.
  • Li T; State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology, Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China.
Phys Rev Lett ; 123(16): 165701, 2019 Oct 18.
Article em En | MEDLINE | ID: mdl-31702358
ABSTRACT
The topological edge state (TES) in a one-dimensional optical lattice has exhibited robust field localization or waveguiding against the structural perturbations that would give rise to fault-tolerant photonic integrations. However, the zero mode as a kind of TES usually deviates from the exact zero-energy state in a finite Hermitian lattice due to the coupling between these edge states, which inevitably weaken the topological protection. Here, we first show such a breakup of zero modes in finite Su-Schriffer-Heeger optical lattices and then reveal their recovery by introducing non-Hermitian degeneracies with parity-time (PT) symmetry. We carry out experiments in a finite silicon waveguide lattice, where a passive-PT symmetry was implemented with carefully controlled lossy silicon waveguides. The experimental results are fully compatible with the theoretical prediction. Our results show that the topological property of an open system can be tuned by non-Hermitian lattice engineering, which offers a route to enhance the topological protection in a finite system.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China