Your browser doesn't support javascript.
loading
BRM: a statistical method for QTL mapping based on bulked segregant analysis by deep sequencing.
Huang, Likun; Tang, Weiqi; Bu, Suhong; Wu, Weiren.
Afiliação
  • Huang L; Fujian Key Laboratory of Crop Breeding by Design, Fuzhou, Fujian 350002.
  • Tang W; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002.
  • Bu S; Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, Fujian 350108, China.
  • Wu W; Fujian Key Laboratory of Crop Breeding by Design, Fuzhou, Fujian 350002.
Bioinformatics ; 36(7): 2150-2156, 2020 04 01.
Article em En | MEDLINE | ID: mdl-31742317
MOTIVATION: Bulked segregant analysis by deep sequencing (BSA-seq) has been widely used for quantitative trait locus (QTL) mapping in recent years. A number of different statistical methods for BSA-seq have been proposed. However, determination of significance threshold, the key point for QTL identification, remains to be a problem that has not been well solved due to the difficulty of multiple testing correction. In addition, estimation of the confidence interval is also a problem to be solved. RESULTS: In this paper, we propose a new statistical method for BSA-seq, named Block Regression Mapping (BRM). BRM is robust to sequencing noise and is applicable to the case of low sequencing depth. Significance threshold can be reasonably determined by taking multiple testing correction into account. Meanwhile, the confidence interval of QTL position can also be estimated. AVAILABILITY AND IMPLEMENTATION: The R scripts of our method are open source under GPLv3 license at https://github.com/huanglikun/BRM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Locos de Características Quantitativas / Sequenciamento de Nucleotídeos em Larga Escala Tipo de estudo: Prognostic_studies Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Locos de Características Quantitativas / Sequenciamento de Nucleotídeos em Larga Escala Tipo de estudo: Prognostic_studies Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article