Protective effects of a hydrogen-rich solution during cold ischemia in rat lung transplantation.
J Thorac Cardiovasc Surg
; 159(5): 2110-2118, 2020 05.
Article
em En
| MEDLINE
| ID: mdl-31780065
BACKGROUND: Molecular hydrogen can reduce the oxidative stress of ischemia-reperfusion injury in various organs for transplantation and potentially improve survival rates in recipients. This study aimed to evaluate the protective effects of a hydrogen-rich preservation solution against ischemia-reperfusion injury after cold ischemia in rat lung transplantation. METHODS: Lewis rats were divided into a nontransplant group (n = 3), minimum-ischemia group (n = 3), cold ischemia group (n = 6), and cold ischemia with hydrogen-rich (more than 1.0 ppm) preservation solution group (n = 6). The rats in the nontransplant group underwent simple thoracotomy, and the rats in the remaining 3 groups underwent orthotopic left lung transplantation. The ischemic time was <30 minutes in the minimum-ischemia group and 6 hours in the cold ischemia groups. After 2-hour reperfusion, we evaluated arterial blood gas levels, pulmonary function, lung wet-to-dry weight ratio, and histologic features of the lung tissue. The expression of proinflammatory cytokines was measured using quantitative polymerase chain reaction assays, and 8-hydroxydeoxyguanosine levels were evaluated using enzyme-linked immunosorbent assays. RESULTS: When compared with the nontransplant and minimum-ischemia groups, the cold ischemia group had lower dynamic compliance, lower oxygenation levels, and higher wet-to-dry weight ratios. However, these variables were significantly improved in the cold ischemia with hydrogen-rich preservation solution group. This group also had fewer signs of perivascular edema, lower interleukin-1ß messenger RNA expression, and lower 8-hydroxydeoxyguanosine levels than the cold ischemia group. CONCLUSIONS: The use of a hydrogen-rich preservation solution attenuates ischemia-reperfusion injury in rat lungs during cold ischemia through antioxidant and anti-inflammatory effects.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Transplante de Pulmão
/
Soluções para Preservação de Órgãos
/
Substâncias Protetoras
/
Isquemia Fria
/
Hidrogênio
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
J Thorac Cardiovasc Surg
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
Japão