Your browser doesn't support javascript.
loading
Influence of Post-UV/Ozone Treatment of Ultrasonic-Sprayed Zirconium Oxide Dielectric Films for a Low-Temperature Oxide Thin Film Transistor.
Oluwabi, Abayomi Titilope; Gaspar, Diana; Katerski, Atanas; Mere, Arvo; Krunks, Malle; Pereira, Luis; Oja Acik, Ilona.
Afiliação
  • Oluwabi AT; Laboratory of Thin Film Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
  • Gaspar D; i3N/CENIMAT, Department of Materials Science School of Science and Technology, FCT-NOVA, Universidade NOVA de Lisboa and CEMOP/UNINOVA, 2829-516 Campus de Caparica, Portugal.
  • Katerski A; Laboratory of Thin Film Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
  • Mere A; Laboratory of Thin Film Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
  • Krunks M; Laboratory of Thin Film Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
  • Pereira L; i3N/CENIMAT, Department of Materials Science School of Science and Technology, FCT-NOVA, Universidade NOVA de Lisboa and CEMOP/UNINOVA, 2829-516 Campus de Caparica, Portugal.
  • Oja Acik I; Laboratory of Thin Film Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
Materials (Basel) ; 13(1)2019 Dec 18.
Article em En | MEDLINE | ID: mdl-31861357
Solution-processed metal oxides require a great deal of thermal budget in order to achieve the desired film properties. Here, we show that the deposition temperature of sprayed zirconium oxide (ZrOx) thin film can be lowered by exposing the film surface to an ultraviolet (UV) ozone treatment at room temperature. Atomic force microscopy reveals a smooth and uniform film with the root mean square roughness reduced from ~ 0.63 nm (UVO-O) to ~ 0.28 nm (UVO-120) in the UV-ozone treated ZrOx films. X-ray photoelectron spectroscopy analysis indicates the formation of a Zr-O network on the surface film, and oxygen vacancy is reduced in the ZrOx lattice by increasing the UV-ozone treatment time. The leakage current density in Al/ZrOx/p-Si structure was reduced by three orders of magnitude by increasing the UV-ozone exposure time, while the capacitance was in the range 290-266 nF/cm2, corresponding to a relative permittivity (k) in the range 5.8-6.6 at 1 kHz. An indium gallium zinc oxide (IGZO)-based thin film transistor, employing a UV-treated ZrOx gate dielectric deposited at 200 °C, exhibits negligible hysteresis, an Ion/Ioff ratio of 104, a saturation mobility of 8.4 cm2 V-1S-1, a subthreshold slope of 0.21 V.dec-1, and a Von of 0.02 V. These results demonstrate the potentiality of low-temperature sprayed amorphous ZrOx to be applied as a dielectric in flexible and low-power-consumption oxide electronics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estônia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estônia