Your browser doesn't support javascript.
loading
Enhanced Transport of Shape and Rigidity-Tuned α-Lactalbumin Nanotubes across Intestinal Mucus and Cellular Barriers.
Bao, Cheng; Liu, Bin; Li, Bin; Chai, Jingjing; Zhang, Liwei; Jiao, Lulu; Li, Dan; Yu, Zhengquan; Ren, Fazheng; Shi, Xinghua; Li, Yuan.
Afiliação
  • Bao C; Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China.
  • Liu B; School of Life Science , Ludong University , Yantai 264025 , China.
  • Li B; Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China.
  • Chai J; Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Chinese Academy of Sciences , 100190 Beijing , China.
  • Zhang L; School of Chemical Engineering and Technology , Sun Yat-sen University , Zhuhai 519082 , China.
  • Jiao L; Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China.
  • Li D; Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China.
  • Yu Z; Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China.
  • Ren F; Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China.
  • Shi X; State Key Laboratories for Agrobiotechnology, College of Biological Sciences , China Agricultural University , Beijing , 100193 , China.
  • Li Y; Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China.
Nano Lett ; 20(2): 1352-1361, 2020 02 12.
Article em En | MEDLINE | ID: mdl-31904988
Mucus is a viscoelastic biological hydrogel that protects the epithelial surface from penetration by most nanoparticles, which limits the efficiency of oral drug delivery. Pursuing highly efficient, biocompatible, and biodegradable oral drug vehicles is of central importance to the development of promising nanomedicine. Here, we prepared five peptosomes (PSs) with various sizes, shapes, and rigidities based on self-assembly of amphiphilic α-lactalbumin (α-lac) peptides from partial enzymolysis and cross-linking. The mucus permeation of α-lac PSs and release of curcumin (Cur) encapsulated in these PSs were evaluated. Compared with a long nanotube, big nanosphere, small nanosphere, and cross-linked short nanotube, we demonstrated that a short nanotube (SNT) exhibits excellent permeability in mucus, which enables it to arrive at epithelial cells quickly. Besides, SNT exhibits the highest cellular uptake and transmembrane permeability on Caco-2/HT29-MTX (E12) 3D coculture model. In vivo pharmacokinetic evaluation revealed that SNT formulation shows the highest curcumin bioavailability, which is 6.85-folds higher than free Cur. Most importantly, Cur loaded in SNT exhibits the optimum therapeutic efficacy for in vivo treatment of dextran sulfate sodium (DSS)-induced ulcerative colitis. In the end, the mechanism of the high permeability of SNTs through mucus was explained by coarse-grained molecular dynamics simulations, which indicated that short time scale jiggling and flying across pores of mucus network played key roles. These findings revealed the tubular α-lac PSs could be a promising oral drug delivery system targeted to mucosal for improving absorption and bioavailability of hydrophobic bioactive ingredients.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Portadores de Fármacos / Colite Ulcerativa / Nanopartículas / Lactalbumina Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Nano Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Portadores de Fármacos / Colite Ulcerativa / Nanopartículas / Lactalbumina Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Nano Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China