Variable selection and estimation in causal inference using Bayesian spike and slab priors.
Stat Methods Med Res
; 29(9): 2445-2469, 2020 09.
Article
em En
| MEDLINE
| ID: mdl-31939336
Unbiased estimation of causal effects with observational data requires adjustment for confounding variables that are related to both the outcome and treatment assignment. Standard variable selection techniques aim to maximize predictive ability of the outcome model, but they ignore covariate associations with treatment and may not adjust for important confounders weakly associated to outcome. We propose a novel method for estimating causal effects that simultaneously considers models for both outcome and treatment, which we call the bilevel spike and slab causal estimator (BSSCE). By using a Bayesian formulation, BSSCE estimates the posterior distribution of all model parameters and provides straightforward and reliable inference. Spike and slab priors are used on each covariate coefficient which aim to minimize the mean squared error of the treatment effect estimator. Theoretical properties of the treatment effect estimator are derived justifying the prior used in BSSCE. Simulations show that BSSCE can substantially reduce mean squared error over numerous methods and performs especially well with large numbers of covariates, including situations where the number of covariates is greater than the sample size. We illustrate BSSCE by estimating the causal effect of vasoactive therapy vs. fluid resuscitation on hypotensive episode length for patients in the Multiparameter Intelligent Monitoring in Intensive Care III critical care database.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Modelos Estatísticos
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Stat Methods Med Res
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
Estados Unidos