Your browser doesn't support javascript.
loading
Comparative analysis of thylakoid protein complexes in state transition mutants nsi and stn7: focus on PSI and LHCII.
Koskela, Minna M; Brünje, Annika; Ivanauskaite, Aiste; Lopez, Laura S; Schneider, Dominik; DeTar, Rachael A; Kunz, Hans-Henning; Finkemeier, Iris; Mulo, Paula.
Afiliação
  • Koskela MM; Department of Biochemistry, Molecular Plant Biology, University of Turku, Biocity A, Tykistökatu 6, 20520, Turku, Finland.
  • Brünje A; Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237 - Opatovický mlýn, 379 81, Trebon, Czech Republic.
  • Ivanauskaite A; Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149, Münster, Germany.
  • Lopez LS; Department of Biochemistry, Molecular Plant Biology, University of Turku, Biocity A, Tykistökatu 6, 20520, Turku, Finland.
  • Schneider D; Plant Physiology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
  • DeTar RA; Compact Plants Phenomics Center, Washington State University, Pullman, WA, 99164, USA.
  • Kunz HH; Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA.
  • Finkemeier I; Plant Physiology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
  • Mulo P; Plant Physiology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
Photosynth Res ; 145(1): 15-30, 2020 Jul.
Article em En | MEDLINE | ID: mdl-31975158
ABSTRACT
The photosynthetic machinery of plants can acclimate to changes in light conditions by balancing light-harvesting between the two photosystems (PS). This acclimation response is induced by the change in the redox state of the plastoquinone pool, which triggers state transitions through activation of the STN7 kinase and subsequent phosphorylation of light-harvesting complex II (LHCII) proteins. Phosphorylation of LHCII results in its association with PSI (state 2), whereas dephosphorylation restores energy allocation to PSII (state 1). In addition to state transition regulation by phosphorylation, we have recently discovered that plants lacking the chloroplast acetyltransferase NSI are also locked in state 1, even though they possess normal LHCII phosphorylation. This defect may result from decreased lysine acetylation of several chloroplast proteins. Here, we compared the composition of wild type (wt), stn7 and nsi thylakoid protein complexes involved in state transitions separated by Blue Native gel electrophoresis. Protein complex composition and relative protein abundances were determined by LC-MS/MS analyses using iBAQ quantification. We show that despite obvious mechanistic differences leading to defects in state transitions, no major differences were detected in the composition of PSI and LHCII between the mutants. Moreover, both stn7 and nsi plants show retarded growth and decreased PSII capacity under fluctuating light as compared to wt, while the induction of non-photochemical quenching under fluctuating light was much lower in both nsi mutants than in stn7.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Cloroplastos / Arabidopsis / Aclimatação Idioma: En Revista: Photosynth Res Assunto da revista: METABOLISMO Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Finlândia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Cloroplastos / Arabidopsis / Aclimatação Idioma: En Revista: Photosynth Res Assunto da revista: METABOLISMO Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Finlândia