Your browser doesn't support javascript.
loading
Entangled system-and-environment dynamics: Phase-space dissipaton theory.
Wang, Yao; Xu, Rui-Xue; Yan, YiJing.
Afiliação
  • Wang Y; Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Xu RX; Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Yan Y; Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China.
J Chem Phys ; 152(4): 041102, 2020 Jan 31.
Article em En | MEDLINE | ID: mdl-32007083
ABSTRACT
Dissipaton-equation-of-motion (DEOM) theory [Y. J. Yan, J. Chem. Phys. 140, 054105 (2014)] is an exact and nonperturbative many-particle method for open quantum systems. The existing dissipaton algebra also treats the dynamics of hybrid bath solvation coordinates. The dynamics of conjugate momentums remain to be addressed within the DEOM framework. In this work, we establish this missing ingredient, the dissipaton algebra on solvation momentums, with rigorous validations against necessary and sufficient criteria. The resulted phase-space DEOM theory will serve as a solid ground for further developments of various practical methods toward a broad range of applications. We illustrate this novel dissipaton algebra with the phase-space DEOM-evaluation on heat current fluctuation.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China