Your browser doesn't support javascript.
loading
Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp: implications for acclimation under thermal stress.
Fernández, Pamela A; Gaitán-Espitia, Juan Diego; Leal, Pablo P; Schmid, Matthias; Revill, Andrew T; Hurd, Catriona L.
Afiliação
  • Fernández PA; Centro i~mar & CeBiB, Universidad de Los Lagos, Camino a Chinquihue Km 6, Puerto Montt, Casilla 557, Chile. Pamela.fernandez@ulagos.cl.
  • Gaitán-Espitia JD; Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, 7004, TAS, Australia. Pamela.fernandez@ulagos.cl.
  • Leal PP; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, SAR, China.
  • Schmid M; Departamento de Repoblación y Cultivo, Instituto de Fomento Pesquero, Balmaceda 252, Puerto Montt, Casilla 665, Chile.
  • Revill AT; Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, 7004, TAS, Australia.
  • Hurd CL; CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, 7001, TAS, Australia.
Sci Rep ; 10(1): 3186, 2020 02 21.
Article em En | MEDLINE | ID: mdl-32081970
ABSTRACT
Local and global changes associated with anthropogenic activities are impacting marine and terrestrial ecosystems. Macroalgae, especially habitat-forming species like kelp, play critical roles in temperate coastal ecosystems. However, their abundance and distribution patterns have been negatively affected by warming in many regions around the globe. Along with global change, coastal ecosystems are also impacted by local drivers such as eutrophication. The interaction between global and local drivers might modulate kelp responses to environmental change. This study examines the regulatory effect of NO3- on the thermal plasticity of the giant kelp Macrocystis pyrifera. To do this, thermal performance curves (TPCs) of key temperature-dependant traits-growth, photosynthesis, NO3- assimilation and chlorophyll a fluorescence-were examined under nitrate replete and deplete conditions in a short-term incubation. We found that thermal plasticity was modulated by NO3- but different thermal responses were observed among traits. Our study reveals that nitrogen, a local driver, modulates kelp responses to high seawater temperatures, ameliorating the negative impacts on physiological performance (i.e. growth and photosynthesis). However, this effect might be species-specific and vary among biogeographic regions - thus, further work is needed to determine the generality of our findings to other key temperate macroalgae that are experiencing temperatures close to their thermal tolerance due to climate change.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Chile

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Chile