Your browser doesn't support javascript.
loading
Fungal endophytes promote the accumulation of Amaryllidaceae alkaloids in Lycoris radiata.
Zhou, Jiayu; Liu, Zhilin; Wang, Songfeng; Li, Jie; Li, Yikui; Chen, Wei-Kang; Wang, Ren.
Afiliação
  • Zhou J; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.
  • Liu Z; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.
  • Wang S; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.
  • Li J; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.
  • Li Y; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.
  • Chen WK; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.
  • Wang R; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.
Environ Microbiol ; 22(4): 1421-1434, 2020 04.
Article em En | MEDLINE | ID: mdl-32090436
ABSTRACT
Lycoris radiata is a main source of Amaryllidaceae alkaloids; however, the low content of these alkaloids in planta remains a limit to their pharmaceutical development and utilization. The accumulation of secondary metabolites can be enhanced in plants inoculated with fungal endophytes. In this study, we analysed the diversity of culturable fungal endophytes in different organs of L. radiata. Then, by analysing the correlation between the detectable rate of each fungal species and the content of each tested alkaloid, we proposed several fungal candidates implicated in the increase of alkaloid accumulation. This was verified by inoculating these candidates to L. radiata plants. Based on the results of two independent experiments conducted in May 2018 and October 2019, the individual inoculation of nine fungal endophytes significantly increased the total content of the tested alkaloids in the entire L. radiata plants. This is the first study in L. radiata to show that fungal endophytes are able to improve the accumulation of various alkaloids. Therefore, our results provide insights into a better understanding of interactions between plants and fungal endophytes and suggest an effective strategy for enhancing the alkaloid content in the cultivation of L. radiata.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lycoris / Alcaloides de Amaryllidaceae / Endófitos / Fungos Idioma: En Revista: Environ Microbiol Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lycoris / Alcaloides de Amaryllidaceae / Endófitos / Fungos Idioma: En Revista: Environ Microbiol Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China