Your browser doesn't support javascript.
loading
Structural and Electrochemical Impacts of Mg/Mn Dual Dopants on the LiNiO2 Cathode in Li-Metal Batteries.
Mu, Linqin; Kan, Wang Hay; Kuai, Chunguang; Yang, Zhijie; Li, Luxi; Sun, Cheng-Jun; Sainio, Sami; Avdeev, Maxim; Nordlund, Dennis; Lin, Feng.
Afiliação
  • Mu L; Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
  • Kan WH; Spallation Neutron Source Science Center, No. 1, Zhongziyuan Road, Dalang, Dongguan 523803, China.
  • Kuai C; Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234, Australia.
  • Yang Z; Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
  • Li L; Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
  • Sun CJ; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States.
  • Sainio S; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States.
  • Avdeev M; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Nordlund D; Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234, Australia.
  • Lin F; School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia.
ACS Appl Mater Interfaces ; 12(11): 12874-12882, 2020 Mar 18.
Article em En | MEDLINE | ID: mdl-32129595
Doping chemistry has been regarded as an efficient strategy to overcome some fundamental challenges facing the "no-cobalt" LiNiO2 cathode materials. By utilizing the doping chemistry, we evaluate the battery performance and structural/chemical reversibility of a new no-cobalt cathode material (Mg/Mn-LiNiO2). The unique dual dopants drive Mg and Mn to occupy the Li site and Ni site, respectively. The Mg/Mn-LiNiO2 cathode delivers smooth voltage profiles, enhanced structural stability, elevated self-discharge resistance, and inhibited nickel dissolution. As a result, the Mg/Mn-LiNiO2 cathode enables improved cycling stability in lithium metal batteries with the conventional carbonate electrolyte: 80% capacity retention after 350 cycles at C/3, and 67% capacity retention after 500 cycles at 2C (22 °C). We then take the Mg/Mn-LiNiO2 as the platform to investigate the local structural and chemical reversibility, where we identify that the irreversibility takes place starting from the very first cycle. The highly reactive surface induces the surface oxygen loss, metal reduction reaching the subsurface, and metal dissolution. Our data demonstrate that the dual dopants can, to some degree, mitigate the irreversibility and improve the cycling stability of LiNiO2, but more efforts are needed to eliminate the key challenges of these materials for battery operation in the conventional carbonate electrolyte.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos