Your browser doesn't support javascript.
loading
Machine learning for cluster analysis of localization microscopy data.
Williamson, David J; Burn, Garth L; Simoncelli, Sabrina; Griffié, Juliette; Peters, Ruby; Davis, Daniel M; Owen, Dylan M.
Afiliação
  • Williamson DJ; Department of Physics and Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
  • Burn GL; Department of Physics and Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
  • Simoncelli S; Department of Physics and Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
  • Griffié J; London Centre for Nanotechnology and Department of Chemistry, University College London, London, WC1H 0AH, UK.
  • Peters R; Department of Physics and Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
  • Davis DM; Department of Physics and Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
  • Owen DM; Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK.
Nat Commun ; 11(1): 1493, 2020 03 20.
Article em En | MEDLINE | ID: mdl-32198352
ABSTRACT
Quantifying the extent to which points are clustered in single-molecule localization microscopy data is vital to understanding the spatial relationships between molecules in the underlying sample. Many existing computational approaches are limited in their ability to process large-scale data sets, to deal effectively with sample heterogeneity, or require subjective user-defined analysis parameters. Here, we develop a supervised machine-learning approach to cluster analysis which is fast and accurate. Trained on a variety of simulated clustered data, the neural network can classify millions of points from a typical single-molecule localization microscopy data set, with the potential to include additional classifiers to describe different subtypes of clusters. The output can be further refined for the measurement of cluster area, shape, and point-density. We demonstrate this approach on simulated data and experimental data of the kinase Csk and the adaptor PAG in primary human T cell immunological synapses.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenômenos Biológicos / Análise por Conglomerados / Aprendizado de Máquina / Microscopia Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenômenos Biológicos / Análise por Conglomerados / Aprendizado de Máquina / Microscopia Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido