Your browser doesn't support javascript.
loading
Anomaly detection based on a dynamic Markov model.
Ren, Huorong; Ye, Zhixing; Li, Zhiwu.
Afiliação
  • Ren H; School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China.
  • Ye Z; The Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xi'an 710071, China.
  • Li Z; School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China.
Inf Sci (N Y) ; 411: 52-65, 2017 Oct.
Article em En | MEDLINE | ID: mdl-32226110
Anomaly detection in sequence data is becoming more and more important in a wide variety of application domains such as credit card fraud detection, health care in medical field, and intrusion detection in cyber security. In the existing anomaly detection approaches, Markov chain techniques are widely accepted for their simple realization and few parameters. However, the short memory property of a classical Markov model ignores the interaction among data, and the long memory property of a higher order Markov model clouds the relationship between the previous data and current test data, and reduces the reliability of the model. Besides, both of these models cannot successfully describe the sequences changing with a tendency. In this paper, we propose an anomaly detection approach based on a dynamic Markov model. This approach segments sequence data by a sliding window. In the sliding window, we define the states of data according to the value of the data and establish a higher order Markov model with a proper order consequently, to balance the length of the memory property and keep up with the trend of sequences. In addition, an anomaly substitution strategy is proposed to prevent the detected anomalies from impacting the building of the models and keep anomaly detection continuously. The experimental results using simulated datasets and real-world datasets have demonstrated that the proposed approach improves the adaptability and stability of anomaly detection in sequence data.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Health_economic_evaluation Idioma: En Revista: Inf Sci (N Y) Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Health_economic_evaluation Idioma: En Revista: Inf Sci (N Y) Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China