Mutations associated with human neural tube defects display disrupted planar cell polarity in Drosophila.
Elife
; 92020 04 01.
Article
em En
| MEDLINE
| ID: mdl-32234212
As an embryo develops, its cells must work together to build mature tissues and organs. During the formation of the nervous system, for example, a sheet of cells destined to become the brain and spinal cord folds up into a tube spanning the length of the embryo. Normally, this tube known as the 'neural tube' zips up, and the cells that will eventually become skin and other surrounding tissues close in over it. If the neural tube does not close completely, different parts of the spinal cord or brain can remain unprotected. This can cause diseases called neural tube defects, such as spina bifida, which is characterized by holes in the backbone exposing the spinal cord and surrounding membranes. Patients with neural tube defects can have similar genetic mutations, for example, in the genes controlling a process called "planar cell polarity", or PCP for short. Cells arranged in flat sheets use the PCP process to sense direction, and it is this process that allows structures, such as the scales on a fish or the hairs on a mouse, to all point in the same direction. PCP is also important in embryonic development: sheets of cells that can sense direction correctly can therefore move collectively to complete complex tasks (such as closing the neural tube). However, no-one knew whether the specific PCP gene mutations implicated in neural tube defects in humans actually affected the cells' ability to sense direction, or indeed whether they were even involved in causing the diseases. Humphries et al. set out to find out more about these mutations using fruit flies as a model system. The fruit fly is widely used to study the genes and signals involved in direction sensing, especially PCP. Problems with PCP produce easily measurable changes in the wing and eye, showing what went wrong and how badly. Humphries et al. genetically engineered fruit flies to have the same mutations as human patients and revealed that these mutations did indeed alter cells' ability to sense direction. These experiments also showed that each mutation did so in a different way, and with varying severity. This explained why the same mutations caused different levels of neural defects in mice (which are commonly used to study human diseases) and suggests that they might contribute to neural tube disorders in humans. These results show potential connections between neural tube defects and direction sensing in cells. In the future, this study and follow-up work could help researchers to understand what types of mutation have the most impact, which may eventually allow doctors to better predict who is most at risk of being affected by these conditions.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Proteínas de Transporte
/
Polaridade Celular
/
Proteínas de Drosophila
/
Peptídeos e Proteínas de Sinalização Intracelular
/
Proteínas de Membrana
/
Mutação
/
Defeitos do Tubo Neural
Tipo de estudo:
Etiology_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Elife
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
Estados Unidos