Your browser doesn't support javascript.
loading
Transcriptomic analysis reveals the regulation network of BmKrüppel homolog 1 in the oocyte development of Bombyx mori.
Zhu, Zi-Dan; Hu, Qi-Hao; Tong, Chun-Mei; Yang, Hong-Guang; Zheng, Si-Chun; Feng, Qi-Li; Deng, Hui-Min.
Afiliação
  • Zhu ZD; Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
  • Hu QH; Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
  • Tong CM; Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
  • Yang HG; Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
  • Zheng SC; Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
  • Feng QL; Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
  • Deng HM; Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
Insect Sci ; 28(1): 47-62, 2021 Feb.
Article em En | MEDLINE | ID: mdl-32283000
ABSTRACT
Krüppel homolog 1 (Kr-h1), a zinc finger transcription factor, is involved in the metamorphosis and adult reproduction of insects. However, the role of Kr-h1 in reproduction of holometabolic insects remains to be elucidated. The regulation network of Kr-h1-associated genes in the reproduction in Bombyx mori was investigated in this study. The higher expression level of BmKr-h1 in the ovaries was detected during the late pupal stage and adults. RNA interference (RNAi)-mediated depletion of BmKr-h1 in the female at day 6 of pupae resulted in abnormal oocytes at 48 h post-double-stranded RNA treatment, which showed less yolk protein deposition and partially transparent chorion. RNA-seq and subsequent differentially expressed transcripts analysis showed that knockdown of BmKr-h1 caused a decrease in the expression of 2882 genes and an increase in the expression of 2565 genes in the oocytes at day 8 of pupae. Totally, 27 genes coding for transcription factors were down-regulated, while six genes coding for other transcription factors were up-regulated. BmKr-h1 bound to the Kr-h1 binding site of the transcription factors AP-1 (activating protein-1) and FOXG1 to increase their messenger RNA transcripts in the BmN cells, respectively. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses of that positively co-expressed with AP-1 and FOXG1 transcripts showed mainly enrichment in the metabolic-related pathways, the nutrient absorption and the yolk protein absorption processes. These data suggested that BmKr-h1 might directly regulate the metabolic-related pathways, the nutrient absorption and the yolk protein absorption processes or probably through AP-1 and /or FOXG1 to regulate oocyte development.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oócitos / Bombyx / Regulação da Expressão Gênica no Desenvolvimento / Proteínas de Insetos / Fatores de Transcrição Kruppel-Like / Redes Reguladoras de Genes / Transcriptoma Limite: Animals Idioma: En Revista: Insect Sci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oócitos / Bombyx / Regulação da Expressão Gênica no Desenvolvimento / Proteínas de Insetos / Fatores de Transcrição Kruppel-Like / Redes Reguladoras de Genes / Transcriptoma Limite: Animals Idioma: En Revista: Insect Sci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China