Your browser doesn't support javascript.
loading
MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks.
Nagpal, Sunil; Singh, Rashmi; Yadav, Deepak; Mande, Sharmila S.
Afiliação
  • Nagpal S; Bio-Sciences R&D Division, TCS Research, Pune, Maharashtra 411013, India.
  • Singh R; Bio-Sciences R&D Division, TCS Research, Pune, Maharashtra 411013, India.
  • Yadav D; Bio-Sciences R&D Division, TCS Research, Pune, Maharashtra 411013, India.
  • Mande SS; Bio-Sciences R&D Division, TCS Research, Pune, Maharashtra 411013, India.
Nucleic Acids Res ; 48(W1): W572-W579, 2020 07 02.
Article em En | MEDLINE | ID: mdl-32338757
Microbial association networks are frequently used for understanding and comparing community dynamics from microbiome datasets. Inferring microbial correlations for such networks and obtaining meaningful biological insights, however, requires a lengthy data management workflow, choice of appropriate methods, statistical computations, followed by a different pipeline for suitably visualizing, reporting and comparing the associations. The complexity is further increased with the added dimension of multi-group 'meta-data' and 'inter-omic' functional profiles that are often associated with microbiome studies. This not only necessitates the need for categorical networks, but also integrated and bi-partite networks. Multiple options of network inference algorithms further add to the efforts required for performing correlation-based microbiome interaction studies. We present MetagenoNets, a web-based application, which accepts multi-environment microbial abundance as well as functional profiles, intelligently segregates 'continuous and categorical' meta-data and allows inference as well as visualization of categorical, integrated (inter-omic) and bi-partite networks. Modular structure of MetagenoNets ensures logical flow of analysis (inference, integration, exploration and comparison) in an intuitive and interactive personalized dashboard driven framework. Dynamic choice of filtration, normalization, data transformation and correlation algorithms ensures, that end-users get a one-stop solution for microbial network analysis. MetagenoNets is freely available at https://web.rniapps.net/metagenonets.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Microbiota Limite: Humans Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Microbiota Limite: Humans Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Índia