A Genome-Wide Association Study for Resistance to the Insect Pest Leptocybe invasa in Eucalyptus grandis Reveals Genomic Regions and Positional Candidate Defense Genes.
Plant Cell Physiol
; 61(7): 1285-1296, 2020 Jul 01.
Article
em En
| MEDLINE
| ID: mdl-32379870
The galling insect, Leptocybe invasa, causes significant losses in plantations of various Eucalyptus species and hybrids, threatening its economic viability. We applied a genome-wide association study (GWAS) to identify single-nucleotide polymorphism (SNP) markers associated with resistance to L. invasa. A total of 563 insect-challenged Eucalyptus grandis trees, from 61 half-sib families, were genotyped using the EUChip60K SNP chip, and we identified 15,445 informative SNP markers in the test population. Multi-locus mixed-model (MLMM) analysis identified 35 SNP markers putatively associated with resistance to L. invasa based on four discreet classes of insect damage scores: (0) not infested, (1) infested showing evidence of oviposition but no gall development, (2) infested with galls on leaves, midribs or petioles and (3) stunting and lethal gall formation. MLMM analysis identified three associated genomic regions on chromosomes 3, 7 and 8 jointly explaining 17.6% of the total phenotypic variation. SNP analysis of a validation population of 494 E. grandis trees confirmed seven SNP markers that were also detected in the initial association analysis. Based on transcriptome profiles of resistant and susceptible genotypes from an independent experiment, we identified several putative candidate genes in associated genomic loci including Nucleotide-binding ARC- domain (NB-ARC) and toll-interleukin-1-receptor-Nucleotide binding signal- Leucine rich repeat (TIR-NBS-LRR) genes. Our results suggest that Leptocybe resistance in E. grandis may be influenced by a few large-effect loci in combination with minor effect loci segregating in our test and validation populations.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Genes de Plantas
/
Eucalyptus
/
Defesa das Plantas contra Herbivoria
/
Himenópteros
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Animals
Idioma:
En
Revista:
Plant Cell Physiol
Assunto da revista:
BOTANICA
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
África do Sul