Your browser doesn't support javascript.
loading
A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type.
Le Goallec, Alan; Tierney, Braden T; Luber, Jacob M; Cofer, Evan M; Kostic, Aleksandar D; Patel, Chirag J.
Afiliação
  • Le Goallec A; Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America.
  • Tierney BT; Department of Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America.
  • Luber JM; Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America.
  • Cofer EM; Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, Massachusetts, United States of America.
  • Kostic AD; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America.
  • Patel CJ; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America.
PLoS Comput Biol ; 16(5): e1007895, 2020 05.
Article em En | MEDLINE | ID: mdl-32392251
The microbiome is a new frontier for building predictors of human phenotypes. However, machine learning in the microbiome is fraught with issues of reproducibility, driven in large part by the wide range of analytic models and metagenomic data types available. We aimed to build robust metagenomic predictors of host phenotype by comparing prediction performances and biological interpretation across 8 machine learning methods and 4 different types of metagenomic data. Using 1,570 samples from 300 infants, we fit 7,865 models for 6 host phenotypes. We demonstrate the dependence of accuracy on algorithm choice and feature definition in microbiome data and propose a framework for building microbiome-derived indicators of host phenotype. We additionally identify biological features predictive of age, sex, breastfeeding status, historical antibiotic usage, country of origin, and delivery type. Our complete results can be viewed at http://apps.chiragjpgroup.org/ubiome_predictions/.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aleitamento Materno / Metagenômica / Aprendizado de Máquina / Antibacterianos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Female / Humans / Infant / Male Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aleitamento Materno / Metagenômica / Aprendizado de Máquina / Antibacterianos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Female / Humans / Infant / Male Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos