Your browser doesn't support javascript.
loading
Model-Free Cluster Analysis of Physical Property Data using Information Maximizing Self-Argument Training.
Sawada, Ryohto; Iwasaki, Yuma; Ishida, Masahiko.
Afiliação
  • Sawada R; System Platform Research Laboratories, NEC Corporation, Tsukuba, 305-8501, Japan. sawada49@atto.t.u-tokyo.ac.jp.
  • Iwasaki Y; System Platform Research Laboratories, NEC Corporation, Tsukuba, 305-8501, Japan.
  • Ishida M; PRESTO, JST, Saitama, 322-0012, Japan.
Sci Rep ; 10(1): 7903, 2020 May 13.
Article em En | MEDLINE | ID: mdl-32404915
We present semi-supervised information maximizing self-argument training (IMSAT), a neural network-based classification method that works without the preparation of labeled data. Semi-supervised IMSAT can amplify specific differences and avoid undesirable misclassification in accordance with the purpose. We demonstrate that semi-supervised IMSAT has a comparable performance with existing methods for semi-supervised learning of image classification and can also classify real experimental data (X-ray diffraction patterns and thermoelectric hysteresis curves) in the same way even though their shape and dimensions are different. Our algorithm will contribute to the automation of big data processing and artificial intelligence-driven material development.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Japão