Your browser doesn't support javascript.
loading
MicroRNA-23 suppresses osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting the MEF2C-mediated MAPK signaling pathway.
Jiang, Kai; Teng, Guo-Dong; Chen, Yan-Qing.
Afiliação
  • Jiang K; Hand Surgery, 971th Hospital of PLA, Qingdao, Shandong, China.
  • Teng GD; Hand Surgery, 971th Hospital of PLA, Qingdao, Shandong, China.
  • Chen YQ; Hand Surgery, 971th Hospital of PLA, Qingdao, Shandong, China.
J Gene Med ; 22(10): e3216, 2020 10.
Article em En | MEDLINE | ID: mdl-32410261
BACKGROUND: The present study aimed to determine the role and mechanism of miR-23 with respect to regulating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). MATERIALS: The expression of miR-23 and MEF2C was measured in osteoporosis (OP) patients and healthy controls by a quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The correlation between miR-23 and MEF2C was determined by the Pearson correlation coefficient. Moreover, bioinformatic analysis was performed using public databases. Target gene function and potential pathways were further examined. Then, we used a miR-23 mimic or inhibitor to further explore the potential mechanism of miR-23. RESULTS: miR-23 is found to be up-regulated and MEF2C is down-regulated in OP patients compared to healthy controls. miR-23 had a negative correlation with MEF2C (r = -0.937, p = 0.001). Bioinformatic analysis revealed that a total of 664 overlapping target genes were found in the TargetScan (http://www.targetscan.org), miRDB (http://mirdb.org) and miRanda (http://www.microrna.org/microrna/home.do) databases. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that miR-23 may regulate the mitogan-activated protein kinase (MAPK) signaling pathway. miR-23 is down-regulated and MEF2C is significantly up-regulated in the osteogenic differentiation of hBMSCs. MEF2C was significantly up-regulated in the osteogenic differentiation of hBMSCs. Overexpression of miR-23 significantly down-regulated alkaline phosphatase (ALP) activity and calcium deposition, whereas the miR-23 inhibitor had the opposite effects. Moreover, overexpression of miR-23 significantly decreased osteoblast-related markers (Runx2, Osx, ALP and OCN). Further experiments confirmed that MEF2C is a direct target of miR-23. Moreover, the miR-23 mimic enhanced the expression of p-p38 but had no effect on p-JNK. CONCLUSIONS: miR-23 decreases the osteogenic differentiation of hBMSCs through the MEF2C/MAPK signaling pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / MicroRNAs / Células-Tronco Mesenquimais Limite: Humans Idioma: En Revista: J Gene Med Assunto da revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / MicroRNAs / Células-Tronco Mesenquimais Limite: Humans Idioma: En Revista: J Gene Med Assunto da revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China