Your browser doesn't support javascript.
loading
Direct and indirect targets of the arabidopsis seed transcription factor ABSCISIC ACID INSENSITIVE3.
Tian, Ran; Wang, Fangfang; Zheng, Qiaolin; Niza, Venus M A G E; Downie, A Bruce; Perry, Sharyn E.
Afiliação
  • Tian R; UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA.
  • Wang F; UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA.
  • Zheng Q; UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA.
  • Niza VMAGE; UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA.
  • Downie AB; UK Seed Biology Group, Department of Horticulture, University of Kentucky, Lexington, KY, 40546-0312, USA.
  • Perry SE; UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA.
Plant J ; 103(5): 1679-1694, 2020 08.
Article em En | MEDLINE | ID: mdl-32445409
ABSTRACT
Arabidopsis thaliana ABSCISIC ACID INSENSITIVE3 (ABI3) is a transcription factor in the B3 domain family. ABI3, along with B3 domain transcription factors LEAFY COTYLEDON2 (LEC2) and FUSCA3 (FUS3), and LEC1, a subunit of the CCAAT box-binding complex, form the so-called LAFL network to control various aspects of seed development and maturation. ABI3 also contributes to the abscisic acid (ABA) response. We report on chromatin immunoprecipitation-tiling array experiments to map binding sites for ABI3 globally. We also assessed transcriptomes in response to ABI3 by comparing developing abi3-5 and wild-type seeds and combined this information to ascertain direct and indirect responsive ABI3 target genes. ABI3 can induce and repress its transcription of target genes directly and some intriguing differences exist in cis motifs between these groups of genes. Directly regulated targets reflect the role of ABI3 in seed maturation, desiccation tolerance, entry into a quiescent state and longevity. Interestingly, ABI3 directly represses a gene encoding a microRNA (MIR160B) that targets AUXIN RESPONSE FACTOR (ARF)10 and ARF16 that are involved in establishment of dormancy. In addition, ABI3, like FUS3, regulates genes encoding MIR156 but while FUS3 only induces genes encoding this product, ABI3 induces these genes during the early stages of seed development, but represses these genes during late development. The interplay between ABI3, the other LAFL genes, and the VP1/ABI3-LIKE (VAL) genes, which are involved in the transition to seedling development are examined and reveal complex interactions controlling development.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sementes / Fatores de Transcrição / Arabidopsis / Proteínas de Arabidopsis Idioma: En Revista: Plant J Assunto da revista: BIOLOGIA MOLECULAR / BOTANICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sementes / Fatores de Transcrição / Arabidopsis / Proteínas de Arabidopsis Idioma: En Revista: Plant J Assunto da revista: BIOLOGIA MOLECULAR / BOTANICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos