Your browser doesn't support javascript.
loading
Increasing storage stability of freeze-dried plasma using trehalose.
Brogna, Raffaele; Oldenhof, Harriëtte; Sieme, Harald; Figueiredo, Constança; Kerrinnes, Tobias; Wolkers, Willem F.
Afiliação
  • Brogna R; Unit for Reproductive Medicine-Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
  • Oldenhof H; Biostabilization laboratory-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany.
  • Sieme H; Unit for Reproductive Medicine-Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
  • Figueiredo C; Unit for Reproductive Medicine-Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
  • Kerrinnes T; Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.
  • Wolkers WF; Helmholtz Centre for Infection Research, Braunschweig, Germany.
PLoS One ; 15(6): e0234502, 2020.
Article em En | MEDLINE | ID: mdl-32525915
ABSTRACT
Preservation of blood plasma in the dried state would facilitate long-term storage and transport at ambient temperatures, without the need of to use liquid nitrogen tanks or freezers. The aim of this study was to investigate the feasibility of dry preservation of human plasma, using sugars as lyoprotectants, and evaluate macromolecular stability of plasma components during storage. Blood plasma from healthy donors was freeze dried using 0-10% glucose, sucrose, or trehalose, and stored at various temperatures. Differential scanning calorimetry was used to measure the glass transition temperatures of freeze-dried samples. Protein aggregation, the overall protein secondary structure, and oxidative damage were studied under different storage conditions. Differential scanning calorimetry measurements showed that plasma freeze-dried with glucose, sucrose and trehalose have glass transition temperatures of respectively 72±3.4°C, 46±11°C, 15±2.4°C. It was found that sugars diminish freeze-drying induced protein aggregation in a dose-dependent manner, and that a 10% (w/v) sugar concentration almost entirely prevents protein aggregation. Protein aggregation after rehydration coincided with relatively high contents of ß-sheet structures in the dried state. Trehalose reduced the rate of protein aggregation during storage at elevated temperatures, and plasma that is freeze- dried plasma with trehalose showed a reduced accumulation of reactive oxygen species and protein oxidation products during storage. In conclusion, freeze-drying plasma with trehalose provides an attractive alternative to traditional cryogenic preservation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plasma / Preservação Biológica / Conservantes Farmacêuticos / Trealose / Proteínas Sanguíneas Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plasma / Preservação Biológica / Conservantes Farmacêuticos / Trealose / Proteínas Sanguíneas Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha