Your browser doesn't support javascript.
loading
The sensitivity of network statistics to incomplete electrode sampling on intracranial EEG.
Conrad, Erin C; Bernabei, John M; Kini, Lohith G; Shah, Preya; Mikhail, Fadi; Kheder, Ammar; Shinohara, Russell T; Davis, Kathryn A; Bassett, Danielle S; Litt, Brian.
Afiliação
  • Conrad EC; Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
  • Bernabei JM; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
  • Kini LG; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
  • Shah P; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
  • Mikhail F; Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
  • Kheder A; Department of Neurology, Emory University, Atlanta, GA, USA.
  • Shinohara RT; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA.
  • Davis KA; Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
  • Bassett DS; Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
  • Litt B; Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
Netw Neurosci ; 4(2): 484-506, 2020.
Article em En | MEDLINE | ID: mdl-32537538
Network neuroscience applied to epilepsy holds promise to map pathological networks, localize seizure generators, and inform targeted interventions to control seizures. However, incomplete sampling of the epileptic brain because of sparse placement of intracranial electrodes may affect model results. In this study, we evaluate the sensitivity of several published network measures to incomplete spatial sampling and propose an algorithm using network subsampling to determine confidence in model results. We retrospectively evaluated intracranial EEG data from 28 patients implanted with grid, strip, and depth electrodes during evaluation for epilepsy surgery. We recalculated global and local network metrics after randomly and systematically removing subsets of intracranial EEG electrode contacts. We found that sensitivity to incomplete sampling varied significantly across network metrics. This sensitivity was largely independent of whether seizure onset zone contacts were targeted or spared from removal. We present an algorithm using random subsampling to compute patient-specific confidence intervals for network localizations. Our findings highlight the difference in robustness between commonly used network metrics and provide tools to assess confidence in intracranial network localization. We present these techniques as an important step toward translating personalized network models of seizures into rigorous, quantitative approaches to invasive therapy.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Netw Neurosci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Netw Neurosci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos