Your browser doesn't support javascript.
loading
Understanding How the Rate of C-H Bond Cleavage Affects Formate Oxidation Catalysis by a Mo-Dependent Formate Dehydrogenase.
Robinson, William E; Bassegoda, Arnau; Blaza, James N; Reisner, Erwin; Hirst, Judy.
Afiliação
  • Robinson WE; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
  • Bassegoda A; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
  • Blaza JN; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
  • Reisner E; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
  • Hirst J; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
J Am Chem Soc ; 142(28): 12226-12236, 2020 07 15.
Article em En | MEDLINE | ID: mdl-32551568
ABSTRACT
Metal-dependent formate dehydrogenases (FDHs) catalyze the reversible conversion of formate into CO2, a proton, and two electrons. Kinetic studies of FDHs provide key insights into their mechanism of catalysis, relevant as a guide for the development of efficient electrocatalysts for formate oxidation as well as for CO2 capture and utilization. Here, we identify and explain the kinetic isotope effect (KIE) observed for the oxidation of formate and deuterioformate by the Mo-containing FDH from Escherichia coli using three different techniques steady-state solution kinetic assays, protein film electrochemistry (PFE), and pre-steady-state stopped-flow methods. For each technique, the Mo center of FDH is reoxidized at a different rate following formate oxidation, significantly affecting the observed kinetic behavior and providing three different viewpoints on the KIE. Steady-state turnover in solution, using an artificial electron acceptor, is kinetically limited by diffusional intermolecular electron transfer, masking the KIE. In contrast, interfacial electron transfer in PFE is fast, lifting the electron-transfer rate limitation and manifesting a KIE of 2.44. Pre-steady-state analyses using stopped-flow spectroscopy revealed a KIE of 3 that can be assigned to the C-H bond cleavage step during formate oxidation. We formalize our understanding of FDH catalysis by fitting all the data to a single kinetic model, recreating the condition-dependent shift in rate-limitation of FDH catalysis between active-site chemical catalysis and regenerative electron transfer. Furthermore, our model predicts the steady-state and time-dependent concentrations of catalytic intermediates, providing a valuable framework for the design of future mechanistic experiments.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Formiato Desidrogenases / Formiatos Tipo de estudo: Prognostic_studies Idioma: En Revista: J Am Chem Soc Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Formiato Desidrogenases / Formiatos Tipo de estudo: Prognostic_studies Idioma: En Revista: J Am Chem Soc Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido