Your browser doesn't support javascript.
loading
Massive online data annotation, crowdsourcing to generate high quality sleep spindle annotations from EEG data.
Lacourse, Karine; Yetton, Ben; Mednick, Sara; Warby, Simon C.
Afiliação
  • Lacourse K; Centre d'études avancées en médecine du sommeil, Montréal, Canada. karinelack@gmail.com.
  • Yetton B; Department of Cognitive Science, University of California, Irvine, CA, USA.
  • Mednick S; Department of Cognitive Science, University of California, Irvine, CA, USA.
  • Warby SC; Centre d'études avancées en médecine du sommeil, Montréal, Canada.
Sci Data ; 7(1): 190, 2020 06 19.
Article em En | MEDLINE | ID: mdl-32561751
Spindle event detection is a key component in analyzing human sleep. However, detection of these oscillatory patterns by experts is time consuming and costly. Automated detection algorithms are cost efficient and reproducible but require robust datasets to be trained and validated. Using the MODA (Massive Online Data Annotation) platform, we used crowdsourcing to produce a large open-source dataset of high quality, human-scored sleep spindles (5342 spindles, from 180 subjects). We evaluated the performance of three subtype scorers: "experts, researchers and non-experts", as well as 7 previously published spindle detection algorithms. Our findings show that only two algorithms had performance scores similar to human experts. Furthermore, the human scorers agreed on the average spindle characteristics (density, duration and amplitude), but there were significant age and sex differences (also observed in the set of detected spindles). This study demonstrates how the MODA platform can be used to generate a highly valid open source standardized dataset for researchers to train, validate and compare automated detectors of biological signals such as the EEG.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sono / Eletroencefalografia / Crowdsourcing / Curadoria de Dados Limite: Humans Idioma: En Revista: Sci Data Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sono / Eletroencefalografia / Crowdsourcing / Curadoria de Dados Limite: Humans Idioma: En Revista: Sci Data Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Canadá