Your browser doesn't support javascript.
loading
Investigation and assessment of micropollutants and associated biological effects in wastewater treatment processes.
Ma, Xiaoyan Y; Dong, Ke; Tang, Lei; Wang, Yongkun; Wang, Xiaochang C; Ngo, Huu Hao; Chen, Rong; Wang, Na.
Afiliação
  • Ma XY; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Envir
  • Dong K; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Envir
  • Tang L; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Envir
  • Wang Y; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Envir
  • Wang XC; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Envir
  • Ngo HH; School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007, Australia.
  • Chen R; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Envir
  • Wang N; School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
J Environ Sci (China) ; 94: 119-127, 2020 Aug.
Article em En | MEDLINE | ID: mdl-32563475
ABSTRACT
Currently, the wastewater treatment plants (WWTPs) attempt to achieve the shifting from general pollution parameters control to reduction of organic micropollutants discharge. However, they have not been able to satisfy the increasing ecological safety needs. In this study, the removal of micropollutants was investigated, and the ecological safety was assessed for a local WWTP. Although the total concentration of 31 micropollutants detected was reduced by 83% using the traditional biological treatment processes, the results did not reflect chemicals that had poor removal efficiencies and low concentrations. Of the five categories of micropollutants, herbicides, insecticides, and bactericides were difficult to remove, pharmaceuticals and UV filters were effectively eliminated. The specific photosynthesis inhibition effect and non-specific bioluminescence inhibition effect from wastewater were detected and evaluated using hazardous concentration where 5% of aquatic organisms are affected. The photosynthesis inhibition effect from wastewater in the WWTP was negligible, even the untreated raw wastewater. However, the bioluminescence inhibition effect from wastewater which was defined as the priority biological effect, posed potential ecological risk. To decrease non-specific biological effects, especially of macromolecular dissolved organic matter, overall pollutant reduction strategy is necessary. Meanwhile, the ozonation process was used to further decrease the bioluminescence inhibition effects from the secondary effluent; ≥ 0.34 g O3/g DOC of ozone dose was recommended for micropollutants elimination control and ecological safety.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ozônio / Poluentes Químicos da Água Tipo de estudo: Risk_factors_studies Idioma: En Revista: J Environ Sci (China) Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ozônio / Poluentes Químicos da Água Tipo de estudo: Risk_factors_studies Idioma: En Revista: J Environ Sci (China) Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2020 Tipo de documento: Article