Your browser doesn't support javascript.
loading
The Epigenetic Pacemaker: modeling epigenetic states under an evolutionary framework.
Farrell, Colin; Snir, Sagi; Pellegrini, Matteo.
Afiliação
  • Farrell C; Department of Human Genetics, University of California, Los Angeles, CA, USA.
  • Snir S; Department of Evolutionary Biology, University of Haifa, Haifa, Israel.
  • Pellegrini M; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
Bioinformatics ; 36(17): 4662-4663, 2020 11 01.
Article em En | MEDLINE | ID: mdl-32573701
SUMMARY: Epigenetic rates of change, much as evolutionary mutation rate along a lineage, vary during lifetime. Accurate estimation of the epigenetic state has vast medical and biological implications. To account for these non-linear epigenetic changes with age, we recently developed a formalism inspired by the Pacemaker model of evolution that accounts for varying rates of mutations with time. Here, we present a python implementation of the Epigenetic Pacemaker (EPM), a conditional expectation maximization algorithm that estimates epigenetic landscapes and the state of individuals and may be used to study non-linear epigenetic aging. AVAILABILITY AND IMPLEMENTATION: The EPM is available at https://pypi.org/project/EpigeneticPacemaker/ under the MIT license. The EPM is compatible with python version 3.6 and above.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Marca-Passo Artificial / Epigenômica Limite: Humans Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Marca-Passo Artificial / Epigenômica Limite: Humans Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos