Your browser doesn't support javascript.
loading
Distinguishing Felsenstein Zone from Farris Zone Using Neural Networks.
Leuchtenberger, Alina F; Crotty, Stephen M; Drucks, Tamara; Schmidt, Heiko A; Burgstaller-Muehlbacher, Sebastian; von Haeseler, Arndt.
Afiliação
  • Leuchtenberger AF; Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna, Austria.
  • Crotty SM; Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna, Austria.
  • Drucks T; School of Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia.
  • Schmidt HA; ARC Centre of Excellence for Mathematical and Statistical Frontiers, University of Adelaide, Adelaide, SA, Australia.
  • Burgstaller-Muehlbacher S; Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna, Austria.
  • von Haeseler A; Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna, Austria.
Mol Biol Evol ; 37(12): 3632-3641, 2020 12 16.
Article em En | MEDLINE | ID: mdl-32637998
Maximum likelihood and maximum parsimony are two key methods for phylogenetic tree reconstruction. Under certain conditions, each of these two methods can perform more or less efficiently, resulting in unresolved or disputed phylogenies. We show that a neural network can distinguish between four-taxon alignments that were evolved under conditions susceptible to either long-branch attraction or long-branch repulsion. When likelihood and parsimony methods are discordant, the neural network can provide insight as to which tree reconstruction method is best suited to the alignment. When applied to the contentious case of Strepsiptera evolution, our method shows robust support for the current scientific view, that is, it places Strepsiptera with beetles, distant from flies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Filogenia / Técnicas Genéticas / Redes Neurais de Computação Tipo de estudo: Evaluation_studies Limite: Animals Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Áustria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Filogenia / Técnicas Genéticas / Redes Neurais de Computação Tipo de estudo: Evaluation_studies Limite: Animals Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Áustria