Your browser doesn't support javascript.
loading
Dietary sphinganine is selectively assimilated by members of the mammalian gut microbiome.
Lee, Min-Ting; Le, Henry H; Johnson, Elizabeth L.
Afiliação
  • Lee MT; Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
  • Le HH; Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
  • Johnson EL; Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA. Electronic address: elj54@cornell.edu.
J Lipid Res ; 62: 100034, 2021.
Article em En | MEDLINE | ID: mdl-32646940
ABSTRACT
Functions of the gut microbiome have a growing number of implications for host metabolic health, with diet being one of the most significant influences on microbiome composition. Compelling links between diet and the gut microbiome suggest key roles for various macronutrients, including lipids, yet how individual classes of dietary lipids interact with the microbiome remains largely unknown. Sphingolipids are bioactive components of most foods and are also produced by prominent gut microbes. This makes sphingolipids intriguing candidates for shaping diet-microbiome interactions. Here, we used a click chemistry-based approach to track the incorporation of bioorthogonal dietary omega-alkynyl sphinganine [sphinganine alkyne (SAA)] into the murine gut microbial community (bioorthogonal labeling). We identified microbial and SAA-specific metabolic products through fluorescence-based sorting of SAA-containing microbes (Sort), 16S rRNA gene sequencing to identify the sphingolipid-interacting microbes (Seq), and comparative metabolomics to identify products of SAA assimilation by the microbiome (Spec). Together, this approach, termed Bioorthogonal labeling-Sort-Seq-Spec (BOSSS), revealed that SAA assimilation is nearly exclusively performed by gut Bacteroides, indicating that sphingolipid-producing bacteria play a major role in processing dietary sphinganine. Comparative metabolomics of cecal microbiota from SAA-treated mice revealed conversion of SAA to a suite of dihydroceramides, consistent with metabolic activities of Bacteroides and Bifidobacterium. Additionally, other sphingolipid-interacting microbes were identified with a focus on an uncharacterized ability of Bacteroides and Bifidobacterium to metabolize dietary sphingolipids. We conclude that BOSSS provides a platform to study the flux of virtually any alkyne-labeled metabolite in diet-microbiome interactions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbioma Gastrointestinal Idioma: En Revista: J Lipid Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbioma Gastrointestinal Idioma: En Revista: J Lipid Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos