Your browser doesn't support javascript.
loading
SCF/c-kit signaling pathway participates in ICC damage in neurogenic bladder.
Ma, Yuan; Chen, Yan; Zheng, Yan; Wen, Yibo; Li, Yunlong; Feng, Jinjin; He, Yulin; Wen, Jianguo.
Afiliação
  • Ma Y; Institute of Clinical Medicine, Urodynamic Center and Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China.
  • Chen Y; Institute of Clinical Medicine, Urodynamic Center and Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China.
  • Zheng Y; Immunization Key Lab of Kidney Disease of Henan Province, People's Hospital of Henan Province, Zhengzhou University , Zhengzhou, China.
  • Wen Y; Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China.
  • Li Y; Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China.
  • Feng J; Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China.
  • He Y; Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China.
  • Wen J; Institute of Clinical Medicine, Urodynamic Center and Department of Urology, Institute of Clinical Medicine, Pediatric Urodynamic Center and Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China.
Cell Cycle ; 19(16): 2074-2080, 2020 08.
Article em En | MEDLINE | ID: mdl-32658594
ABSTRACT
Neurogenic bladder (NB) is a type of double renal dysfunction caused by nerve lesions. The interstitial cells of Cajal (ICC) damage are involved in bladder dysfunction. The aim of this study is to investigate the effect of stem cell factor (SCF)/c-kit signaling pathway on ICC damage in NB model rats. Maximum cystometric capacity (MCC), bladder leak point pressures (BLPP), and bladder compliance (BC) were measured in sham-operated and NB model rats. Immunofluorescent staining for c-kit was performed to determine ICC count in rat bladder trigone. The morphology and ultrastructure changes of ICCs were observed under an electron microscope. The mRNA levels of c-kit and SCF in bladder tissues were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The protein levels of c-kit, SCF, p-JAK, p-STAT1, and p-STAT3 in bladder tissues were determined by western blot. ICC proliferation was detected by CCK-8 assay. NB resulted in changes in ultrastructure changes of ICCs and a decrease in the number of ICCs and in expression of c-kit, SCF, p-JAK, p-STAT1, and p-STAT3 in NB tissues. Inhibition of SCF/c-kit signaling pathway suppressed ICC proliferation by inhibiting JAK/STAT3 pathway. Moreover, inhibition of SCF/c-kit signaling pathway impaired the SCF-induced attenuation of ICC damage in NB model rats. Collectively, our data indicate that SCF/c-kit signaling pathway participates in ICC damage in NB.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bexiga Urinaria Neurogênica / Fator de Células-Tronco / Proteínas Proto-Oncogênicas c-kit / Células Intersticiais de Cajal Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Cell Cycle Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bexiga Urinaria Neurogênica / Fator de Células-Tronco / Proteínas Proto-Oncogênicas c-kit / Células Intersticiais de Cajal Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Cell Cycle Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China