Your browser doesn't support javascript.
loading
The staphylococcal biofilm protein Aap forms a tetrameric species as a necessary intermediate before amyloidogenesis.
Yarawsky, Alexander E; Herr, Andrew B.
Afiliação
  • Yarawsky AE; Graduate Program in Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
  • Herr AB; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA. Electronic address: Andrew.Herr@cchmc.org.
J Biol Chem ; 295(37): 12840-12850, 2020 09 11.
Article em En | MEDLINE | ID: mdl-32665400
The accumulation-associated protein (Aap) from Staphylococcus epidermidis is a biofilm-related protein that was found to be a critical factor for infection using a rat catheter model. The B-repeat superdomain of Aap, composed of 5-17 B-repeats, each containing a Zn2+-binding G5 and a spacer subdomain, is responsible for Zn2+-dependent assembly leading to accumulation of bacteria during biofilm formation. We previously demonstrated that a minimal B-repeat construct (Brpt1.5) forms an antiparallel dimer in the presence of 2-3 Zn2+ ions. More recently, we have reported the presence of functional amyloid-like fibrils composed of Aap within S. epidermidis biofilms and demonstrated that a biologically relevant construct containing five and a half B-repeats (Brpt5.5) forms amyloid-like fibrils similar to those observed in the biofilm. In this study, we analyze the initial assembly events of the Brpt5.5 construct. Analytical ultracentrifugation was utilized to determine hydrodynamic parameters of reversibly associating species and to perform linked equilibrium studies. Linkage studies indicated a mechanism of Zn2+-induced dimerization similar to smaller constructs; however, Brpt5.5 dimers could then undergo further Zn2+-induced assembly into a previously uncharacterized tetramer. This led us to search for potential Zn2+-binding sites outside of the dimer interface. We developed a Brpt5.5 mutant that was unable to form the tetramer and was concordantly incapable of amyloidogenesis. CD and dynamic light scattering indicate that a conformational transition in the tetramer species is a critical step preceding amyloidogenesis. This mechanistic model for B-repeat assembly and amyloidogenesis provides new avenues for potential therapeutic targeting of staphylococcal biofilms.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Staphylococcus epidermidis / Proteínas de Bactérias / Zinco / Biofilmes / Multimerização Proteica / Amiloide Tipo de estudo: Prognostic_studies Idioma: En Revista: J Biol Chem Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Staphylococcus epidermidis / Proteínas de Bactérias / Zinco / Biofilmes / Multimerização Proteica / Amiloide Tipo de estudo: Prognostic_studies Idioma: En Revista: J Biol Chem Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos