Machine learning to assist clinical decision-making during the COVID-19 pandemic.
Bioelectron Med
; 6: 14, 2020.
Article
em En
| MEDLINE
| ID: mdl-32665967
BACKGROUND: The number of cases from the coronavirus disease 2019 (COVID-19) global pandemic has overwhelmed existing medical facilities and forced clinicians, patients, and families to make pivotal decisions with limited time and information. MAIN BODY: While machine learning (ML) methods have been previously used to augment clinical decisions, there is now a demand for "Emergency ML." Throughout the patient care pathway, there are opportunities for ML-supported decisions based on collected vitals, laboratory results, medication orders, and comorbidities. With rapidly growing datasets, there also remain important considerations when developing and validating ML models. CONCLUSION: This perspective highlights the utility of evidence-based prediction tools in a number of clinical settings, and how similar models can be deployed during the COVID-19 pandemic to guide hospital frontlines and healthcare administrators to make informed decisions about patient care and managing hospital volume.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Guideline
/
Prognostic_studies
Idioma:
En
Revista:
Bioelectron Med
Ano de publicação:
2020
Tipo de documento:
Article