Your browser doesn't support javascript.
loading
Interpretable Clinical Genomics with a Likelihood Ratio Paradigm.
Robinson, Peter N; Ravanmehr, Vida; Jacobsen, Julius O B; Danis, Daniel; Zhang, Xingmin Aaron; Carmody, Leigh C; Gargano, Michael A; Thaxton, Courtney L; Karlebach, Guy; Reese, Justin; Holtgrewe, Manuel; Köhler, Sebastian; McMurry, Julie A; Haendel, Melissa A; Smedley, Damian.
Afiliação
  • Robinson PN; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA. Electronic address: peter.robinson@jax.org.
  • Ravanmehr V; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Jacobsen JOB; William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
  • Danis D; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Zhang XA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Carmody LC; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Gargano MA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Thaxton CL; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
  • Karlebach G; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
  • Reese J; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Holtgrewe M; Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Köhler S; Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • McMurry JA; Oregon State University, Corvallis, OR 97331, USA.
  • Haendel MA; Oregon State University, Corvallis, OR 97331, USA.
  • Smedley D; William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
Am J Hum Genet ; 107(3): 403-417, 2020 09 03.
Article em En | MEDLINE | ID: mdl-32755546
Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide measures of how much any individual phenotypic observation has contributed to the prioritization result. However, given that the overall success rate of genomic diagnostics is only around 25%-50% or less in many cohorts, a good ranking cannot be taken to imply that the gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia Computacional / Genômica / Bases de Dados Genéticas / Doenças Raras Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Am J Hum Genet Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia Computacional / Genômica / Bases de Dados Genéticas / Doenças Raras Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Am J Hum Genet Ano de publicação: 2020 Tipo de documento: Article