Your browser doesn't support javascript.
loading
RUN-UP: Accelerated multishot diffusion-weighted MRI reconstruction using an unrolled network with U-Net as priors.
Hu, Yuxin; Xu, Yunyingying; Tian, Qiyuan; Chen, Feiyu; Shi, Xinwei; Moran, Catherine J; Daniel, Bruce L; Hargreaves, Brian A.
Afiliação
  • Hu Y; Department of Radiology, Stanford University, Stanford, California, USA.
  • Xu Y; Department of Electrical Engineering, Stanford University, Stanford, California, USA.
  • Tian Q; Department of Electrical Engineering, Stanford University, Stanford, California, USA.
  • Chen F; Department of Radiology, Stanford University, Stanford, California, USA.
  • Shi X; Department of Electrical Engineering, Stanford University, Stanford, California, USA.
  • Moran CJ; Department of Electrical Engineering, Stanford University, Stanford, California, USA.
  • Daniel BL; Department of Radiology, Stanford University, Stanford, California, USA.
  • Hargreaves BA; Department of Electrical Engineering, Stanford University, Stanford, California, USA.
Magn Reson Med ; 85(2): 709-720, 2021 02.
Article em En | MEDLINE | ID: mdl-32783339
PURPOSE: To accelerate and improve multishot diffusion-weighted MRI reconstruction using deep learning. METHODS: An unrolled pipeline containing recurrences of model-based gradient updates and neural networks was introduced for accelerating multishot DWI reconstruction with shot-to-shot phase correction. The network was trained to predict results of jointly reconstructed multidirection data using single-direction data as input. In vivo brain and breast experiments were performed for evaluation. RESULTS: The proposed method achieves a reconstruction time of 0.1 second per image, over 100-fold faster than a shot locally low-rank reconstruction. The resultant image quality is comparable to the target from the joint reconstruction with a peak signal-to-noise ratio of 35.3 dB, a normalized root-mean-square error of 0.0177, and a structural similarity index of 0.944. The proposed method also improves upon the locally low-rank reconstruction (2.9 dB higher peak signal-to-noise ratio, 29% lower normalized root-mean-square error, and 0.037 higher structural similarity index). With training data from the brain, this method also generalizes well to breast diffusion-weighted imaging, and fine-tuning further reduces aliasing artifacts. CONCLUSION: A proposed data-driven approach enables almost real-time reconstruction with improved image quality, which improves the feasibility of multishot DWI in a wide range of clinical and neuroscientific studies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Imagem de Difusão por Ressonância Magnética Tipo de estudo: Prognostic_studies Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Imagem de Difusão por Ressonância Magnética Tipo de estudo: Prognostic_studies Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos